10 research outputs found
The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to
measure the gravity-wave signature of primordial inflation through its
distinctive imprint on the linear polarization of the cosmic microwave
background. The instrument consists of a polarizing Michelson interferometer
configured as a nulling polarimeter to measure the difference spectrum between
orthogonal linear polarizations from two co-aligned beams. Either input can
view the sky or a temperature-controlled absolute reference blackbody
calibrator. PIXIE will map the absolute intensity and linear polarization
(Stokes I, Q, and U parameters) over the full sky in 400 spectral channels
spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 um
wavelength). Multi-moded optics provide background-limited sensitivity using
only 4 detectors, while the highly symmetric design and multiple signal
modulations provide robust rejection of potential systematic errors. The
principal science goal is the detection and characterization of linear
polarization from an inflationary epoch in the early universe, with
tensor-to-scalar ratio r < 10^{-3} at 5 standard deviations. The rich PIXIE
data set will also constrain physical processes ranging from Big Bang cosmology
to the nature of the first stars to physical conditions within the interstellar
medium of the Galaxy.Comment: 37 pages including 17 figures. Submitted to the Journal of Cosmology
and Astroparticle Physic
Computing the Primordial Power Spectra Directly
The tree order power spectra of primordial inflation depend upon the
norm-squared of mode functions which oscillate for early times and then freeze
in to constant values. We derive simple differential equations for the power
spectra, that avoid the need to numerically simulate the physically irrelevant
phases of the mode functions. We also derive asymptotic expansions which should
be valid until a few e-foldings before first horizon crossing, thereby avoiding
the need to evolve mode functions from the ultraviolet over long periods of
inflation.Comment: 11 pages, uses LaTex2
PAPPA: Primordial Anisotropy Polarization Pathfinder Array
The Primordial Anisotropy Polarization Pathfinder Array (PAPPA) is a
balloon-based instrument to measure the polarization of the cosmic microwave
background and search for the signal from gravity waves excited during an
inflationary epoch in the early universe. PAPPA will survey a 20 x 20 deg patch
at the North Celestial Pole using 32 pixels in 3 passbands centered at 89, 212,
and 302 GHz. Each pixel uses MEMS switches in a superconducting microstrip
transmission line to combine the phase modulation techniques used in radio
astronomy with the sensitivity of transition-edge superconducting bolometers.
Each switched circuit modulates the incident polarization on a single detector,
allowing nearly instantaneous characterization of the Stokes I, Q, and U
parameters. We describe the instrument design and status.Comment: 12 pages, 9 figures. Proceedings of the Fundamental Physics With CMB
workshop, UC Irvine, March 23-25, 2006, to be published in New Astronomy
Review
Fabrication of an Antenna-Coupled Bolometer for Cosmic Microwave Background Polarimetry
We describe the development of a detector for precise measurements of the cosmic microwave background polarization. The detector employs a waveguide to couple light between a pair of Mo/Au superconducting transition edge sensors (TES) and a feedhorn. Incorporation of an on-chip ortho-mode transducer (OMT) results in high isolation. The OMT is micromachined and bonded to the microstrip and TES circuits in a low temperature wafer bonding process. The wafer bonding process incorporates a buried superconducting niobium layer with a single crystal silicon layer which serves as the leg isolated TES membrane and as the microstrip dielectric. We describe the micromachining and wafer bonding process and report measurement results of the microwave circuitry operating in the 29-43GHz band along with Johnson noise measurements of the TES membrane structures and development of Mo/Au TES operating under '00mK
Far-Infrared Polarimetry of the Interstellar Medium
Polarimetry at far-infrared wavelengths is a key tool for studying physical processes on size scales ranging from interstellar dust grains to entire galaxies. A multi-wavelength continuum polarimeter at these wavelengths will allow studies of thermal dust polarization in an effort to constrain the grains’ physical properties and test grain alignment theory. High spatial resolution (5–30 arcsec) and sensitive observations will measure the influence of magnetic fields on infrared cirrus clouds, the envelopes and disks of YSOs, outflows from both low- and high-mass star forming regions, and the relative strength of magnetic, gravitational, and turbulent effects in star- and cloud-formation
Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics
Following the pioneering observations with COBE in the early 1990s, studies of the cosmic microwave background (CMB) have focused on temperature and polarization anisotropies. CMB spectral distortions - tiny departures of the CMB energy spectrum from that of a perfect blackbody - provide a second, independent probe of fundamental physics, with a reach deep into the primordial Universe. The theoretical foundation of spectral distortions has seen major advances in recent years, which highlight the immense potential of this emerging field. Spectral distortions probe a fundamental property of the Universe - its thermal history - thereby providing additional insight into processes within the cosmological standard model (CSM) as well as new physics beyond. Spectral distortions are an important tool for understanding inflation and the nature of dark matter. They shed new light on the physics of recombination and reionization, both prominent stages in the evolution of our Universe, and furnish critical information on baryonic feedback processes, in addition to probing primordial correlation functions at scales inaccessible to other tracers. In principle the range of signals is vast: many orders of magnitude of discovery space could be explored by detailed observations of the CMB energy spectrum. Several CSM signals are predicted and provide clear experimental targets, some of which are already observable with present-day technology. Confirmation of these signals would extend the reach of the CSM by orders of magnitude in physical scale as the Universe evolves from the initial stages to its present form. The absence of these signals would pose a huge theoretical challenge, immediately pointing to new physics
Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics: Astro2020 Science White Paper
International audienceFollowing the pioneering observations with COBE in the early 1990s, studies of the cosmic microwave background (CMB) have focused on temperature and polarization anisotropies. CMB spectral distortions - tiny departures of the CMB energy spectrum from that of a perfect blackbody - provide a second, independent probe of fundamental physics, with a reach deep into the primordial Universe. The theoretical foundation of spectral distortions has seen major advances in recent years, which highlight the immense potential of this emerging field. Spectral distortions probe a fundamental property of the Universe - its thermal history - thereby providing additional insight into processes within the cosmological standard model (CSM) as well as new physics beyond. Spectral distortions are an important tool for understanding inflation and the nature of dark matter. They shed new light on the physics of recombination and reionization, both prominent stages in the evolution of our Universe, and furnish critical information on baryonic feedback processes, in addition to probing primordial correlation functions at scales inaccessible to other tracers. In principle the range of signals is vast: many orders of magnitude of discovery space could be explored by detailed observations of the CMB energy spectrum. Several CSM signals are predicted and provide clear experimental targets, some of which are already observable with present-day technology. Confirmation of these signals would extend the reach of the CSM by orders of magnitude in physical scale as the Universe evolves from the initial stages to its present form. The absence of these signals would pose a huge theoretical challenge, immediately pointing to new physics