21 research outputs found
European Space Agency experiments on thermodiffusion of fluid mixtures in space
Abstract.: This paper describes the European Space Agency (ESA) experiments devoted to study thermodiffusion of fluid mixtures in microgravity environment, where sedimentation and convection do not affect the mass flow induced by the Soret effect. First, the experiments performed on binary mixtures in the IVIDIL and GRADFLEX experiments are described. Then, further experiments on ternary mixtures and complex fluids performed in DCMIX and planned to be performed in the context of the NEUF-DIX project are presented. Finally, multi-component mixtures studied in the SCCO project are detailed
Characterization and stability studies of emulsion systems containing pumice
Emulsions are the most common form of skin care products. However, these systems may exhibit some instability. Therefore, when developing emulsions for topical application it is interesting to verify whether they have suitable physical and mechanical characteristics and further assess their stability. The aim of this work was to study the stability of emulsion systems, which varied in the proportion of the emulsifying agent cetearyl alcohol (and) sodium lauryl sulfate (and) sodium cetearyl sulfate (LSX), the nature of the oily phase (decyl oleate, cyclomethicone or dimethicone) and the presence or absence of pumice (5% w/w). While maintaining the samples at room temperature, rheology studies, texture analysis and microscopic observation of formulations with and without pumice were performed. Samples were also submitted to an accelerated stability study by centrifugation and to a thermal stress test. Through the testing, it was found that the amount of emulsifying agent affects the consistency and textural properties such as firmness and adhesiveness. So, formulations containing LSX (5% w/w) and decyl oleate or dimethicone as oily phase had a better consistency and remained stable with time, so exhibited the best features to be used for skin care products
Hemispheric asymmetry in ocean change and the productivity of ecosystem sentinels
Climate change and other human activities are causing profound effects on marine ecosystem productivity. We show that the breeding success of seabirds is tracking hemispheric differences in ocean warming and human impacts, with the strongest effects on fish-eating, surface-foraging species in the north. Hemispheric asymmetry suggests the need for ocean management at hemispheric scales. For the north, tactical, climate-based recovery plans for forage fish resources are needed to recover seabird breeding productivity. In the south, lower-magnitude change in seabird productivity presents opportunities for strategic management approaches such as large marine protected areas to sustain food webs and maintain predator productivity. Global monitoring of seabird productivity enables the detection of ecosystem change in remote regions and contributes to our understanding of marine climate impacts on ecosystems
Hemispheric asymmetry in ocean change and the productivity of ecosystem sentinels
Climate change and other human activities are causing profound effects on marine ecosystem productivity. We show that the breeding success of seabirds is tracking hemispheric differences in ocean warming and human impacts, with the strongest effects on fish-eating, surface-foraging species in the north. Hemispheric asymmetry suggests the need for ocean management at hemispheric scales. For the north, tactical, climate-based recovery plans for forage fish resources are needed to recover seabird breeding productivity. In the south, lower-magnitude change in seabird productivity presents opportunities for strategic management approaches such as large marine protected areas to sustain food webs and maintain predator productivity. Global monitoring of seabird productivity enables the detection of ecosystem change in remote regions and contributes to our understanding of marine climate impacts on ecosystems
The electric strength of barium titanate
SIGLEAvailable from British Library Document Supply Centre- DSC:D90902 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Recommended from our members
(Bifurcations and patterns in nonlinear dissifative systems)
This report discusses the following topics: Rayleigh-Benard convection with an imposed horizontal flow; Rayleigh-Benard convection in a gas under non-boussinesq conditions; electro- convection in a nematic liquid crystal; and Rayleigh-Benard convection in a nematic liquid crystal. (LSP
Nondiffusive decay of gradient-driven fluctuations in a free-diffusion process
We report the results of an experimental study of the static and dynamic properties of long wavelength concentration fluctuations in a mixture of glycerol and water undergoing free diffusion. The shadowgraph method was used to measure both the mean-squared amplitude and the temporal correlation function of the fluctuations for wave vectors so small as to be inaccessible to dynamic light scattering. For a fluid with a stabilizing vertical concentration gradient, the fluctuations are predicted to have a decay rate that increases with decreasing wave vector q, for wave vectors below a cutoff wave vector qC, determined by gravity and the fluid properties. This behavior is caused by buoyant forces acting on the fluctuations. We find that for wave vectors above ~qC, the decay rate does vary in the normal diffusive manner as Dq2, where D is the mass diffusion coefficient. Furthermore, for qqC we find that longer wavelength fluctuations decay more rapidly than do shorter wavelength fluctuations, i.e., the behavior is nondiffusive, as predicted
Use of dynamic schlieren interferometry to study fluctuations during free diffusion
We used a form of schlieren interferometry to measure the mean-squared amplitude and temporal autocorrelation function of concentration fluctuations driven by the presence of a gradient during the free diffusion of a urea solution into water. By taking and processing sequences of images separated in time by less than the shortest correlation time of interest, we were able to simultaneously measure dynamics at a number of different wave vectors. The technique is conceptually similar to the shadowgraph method, which has been used to make similar measurements, but the schlieren method has the advantage that the transfer function is wave-vector independent rather than oscillatory
Gradient-driven fluctuations experiment: fluid fluctuations in microgravity
We describe an experimental breadboard developed for the investigation of nonequilibrium fluctuations induced by macroscopic temperature and concentration gradients under microgravity conditions. Under these conditions the amplitude of the fluctuations diverges strongly for long wavelengths. The setup was developed at the University of Milan and at the University of California at Santa Barbara within the gradient-driven fluctuations experiment (GRADFLEX) project of the European Space Agency, in collaboration with the National Aeronautics and Space Administration. The apparatus uses a quantitative shadowgraph technique for characterization of the static power spectrum of the fluctuations S(q) and the measurement of their dynamics. We present preliminary experimental results for S(q) obtained in the presence of gravity for gradient-driven fluctuations for two cases, those induced in a liquid mixture with a concentration gradient produced by the Soret effect and those induced in a single-component fluid by a temperature gradient