30 research outputs found
Electromagnetic-field quantization and spontaneous decay in left-handed media
We present a quantization scheme for the electromagnetic field interacting
with atomic systems in the presence of dispersing and absorbing
magnetodielectric media, including left-handed material having negative real
part of the refractive index. The theory is applied to the spontaneous decay of
a two-level atom at the center of a spherical free-space cavity surrounded by
magnetodielectric matter of overlapping band-gap zones. Results for both big
and small cavities are presented, and the problem of local-field corrections
within the real-cavity model is addressed.Comment: 15 pages, 5 figures, RevTe
Effect of aliskiren on post-discharge outcomes among diabetic and non-diabetic patients hospitalized for heart failure: insights from the ASTRONAUT trial
Aims The objective of the Aliskiren Trial on Acute Heart Failure Outcomes (ASTRONAUT) was to determine whether aliskiren, a direct renin inhibitor, would improve post-discharge outcomes in patients with hospitalization for heart failure (HHF) with reduced ejection fraction. Pre-specified subgroup analyses suggested potential heterogeneity in post-discharge outcomes with aliskiren in patients with and without baseline diabetes mellitus (DM). Methods and results ASTRONAUT included 953 patients without DM (aliskiren 489; placebo 464) and 662 patients with DM (aliskiren 319; placebo 343) (as reported by study investigators). Study endpoints included the first occurrence of cardiovascular death or HHF within 6 and 12 months, all-cause death within 6 and 12 months, and change from baseline in N-terminal pro-B-type natriuretic peptide (NT-proBNP) at 1, 6, and 12 months. Data regarding risk of hyperkalaemia, renal impairment, and hypotension, and changes in additional serum biomarkers were collected. The effect of aliskiren on cardiovascular death or HHF within 6 months (primary endpoint) did not significantly differ by baseline DM status (P = 0.08 for interaction), but reached statistical significance at 12 months (non-DM: HR: 0.80, 95% CI: 0.64-0.99; DM: HR: 1.16, 95% CI: 0.91-1.47; P = 0.03 for interaction). Risk of 12-month all-cause death with aliskiren significantly differed by the presence of baseline DM (non-DM: HR: 0.69, 95% CI: 0.50-0.94; DM: HR: 1.64, 95% CI: 1.15-2.33; P < 0.01 for interaction). Among non-diabetics, aliskiren significantly reduced NT-proBNP through 6 months and plasma troponin I and aldosterone through 12 months, as compared to placebo. Among diabetic patients, aliskiren reduced plasma troponin I and aldosterone relative to placebo through 1 month only. There was a trend towards differing risk of post-baseline potassium ≥6 mmol/L with aliskiren by underlying DM status (non-DM: HR: 1.17, 95% CI: 0.71-1.93; DM: HR: 2.39, 95% CI: 1.30-4.42; P = 0.07 for interaction). Conclusion This pre-specified subgroup analysis from the ASTRONAUT trial generates the hypothesis that the addition of aliskiren to standard HHF therapy in non-diabetic patients is generally well-tolerated and improves post-discharge outcomes and biomarker profiles. In contrast, diabetic patients receiving aliskiren appear to have worse post-discharge outcomes. Future prospective investigations are needed to confirm potential benefits of renin inhibition in a large cohort of HHF patients without D
Guidelines for the management of biliary tract and ampullary carcinomas: surgical treatment
The only curative treatment in biliary tract cancer is surgical treatment. Therefore, the suitability of curative resection should be investigated in the first place. In the presence of metastasis to the liver, lung, peritoneum, or distant lymph nodes, curative resection is not suitable. No definite consensus has been reached on local extension factors and curability. Measures of hepatic functional reserve in the jaundiced liver include future liver remnant volume and the indocyanine green (ICG) clearance test. Preoperative portal vein embolization may be considered in patients in whom right hepatectomy or more, or hepatectomy with a resection rate exceeding 50%–60% is planned. Postoperative complications and surgery-related mortality may be reduced with the use of portal vein embolization. Although hepatectomy and/or pancreaticoduodenectomy are preferable for the curative resection of bile duct cancer, extrahepatic bile duct resection alone is also considered in patients for whom it is judged that curative resection would be achieved after a strict diagnosis of its local extension. Also, combined caudate lobe resection is recommended for hilar cholangiocarcinoma. Because the prognosis of patients treated with combined portal vein resection is significantly better than that of unresected patients, combined portal vein resection may be carried out. Prognostic factors after resection for bile duct cancer include positive surgical margins, especially in the ductal stump; lymph node metastasis; perineural invasion; and combined vascular resection due to portal vein and/or hepatic artery invasion. For patients with suspected gallbladder cancer, laparoscopic cholecystectomy is not recommended, and open cholecystectomy should be performed as a rule. When gallbladder cancer invading the subserosal layer or deeper has been detected after simple cholecystectomy, additional resection should be considered. Prognostic factors after resection for gallbladder cancer include the depth of mural invasion; lymph node metastasis; extramural extension, especially into the hepatoduodenal ligament; perineural invasion; and the degree of curability. Pancreaticoduodenectomy is indicated for ampullary carcinoma, and limited operation is also indicated for carcinoma in adenoma. The prognostic factors after resection for ampullary carcinoma include lymph node metastasis, pancreatic invasion, and perineural invasion
Spatial and temporal evaluations of the liquid argon purity in ProtoDUNE-SP
Liquid argon time projection chambers (LArTPCs) rely on highly pure argon to ensure that ionization electrons produced by charged particles reach readout arrays. ProtoDUNE Single-Phase (ProtoDUNE-SP) was an approximately 700-ton liquid argon detector intended to prototype the Deep Underground Neutrino Experiment (DUNE) Far Detector Horizontal Drift module. It contains two drift volumes bisected by the cathode plane assembly, which is biased to create an almost uniform electric field in both volumes. The DUNE Far Detector modules must have robust cryogenic systems capable of filtering argon and supplying the TPC with clean liquid. This paper will explore comparisons of the argon purity measured by the purity monitors with those measured using muons in the TPC from October 2018 to November 2018. A new method is introduced to measure the liquid argon purity in the TPC using muons crossing both drift volumes of ProtoDUNE-SP. For extended periods on the timescale of weeks, the drift electron lifetime was measured to be above 30 ms using both systems. A particular focus will be placed on the measured purity of argon as a function of position in the detector
Constraints on the Cosmic Expansion History from GWTC-3
This material is based upon work supported by NSFʼs LIGO
Laboratory, which is a major facility fully funded by the National
Science Foundation. The authors also gratefully acknowledge the
support of the Science and Technology Facilities Council (STFC)
of the United Kingdom, the Max-Planck-Society (MPS), and the
State of Niedersachsen/Germany for support of the construction
of Advanced LIGO and construction and operation of the
GEO600 detector. Additional support for Advanced LIGO was
provided by the Australian Research Council. The authors
gratefully acknowledge the Italian Istituto Nazionale di Fisica
Nucleare (INFN), the French Centre National de la Recherche
Scientifique (CNRS), and the Netherlands Organization for
Scientific Research (NWO), for the construction and operation
of the Virgo detector and the creation and support of the EGO
consortium. The authors also gratefully acknowledge research
support from these agencies as well as by the Council of Scientific
and Industrial Research of India, the Department of Science and
Technology, India, the Science & Engineering Research Board
(SERB), India, the Ministry of Human Resource Development,
India, the Spanish Agencia Estatal de Investigación (AEI), the
Spanish Ministerio de Ciencia e Innovación and Ministerio de
Universidades, the Conselleria de Fons Europeus, Universitat i
Cultura and the Direcció General de Política Universitaria i
Recerca del Govern de les Illes Balears, the Conselleria
d’Innovació Universitats, Ciència i Societat Digital de la
Generalitat Valenciana and the CERCA Programme Generalitat
de Catalunya, Spain, the National Science Centre of Poland and
the European Union–European Regional Development Fund,
Foundation for Polish Science (FNP), the Swiss National Science
Foundation (SNSF), the Russian Foundation for Basic Research,
the Russian Science Foundation, the European Commission, the
European Social Funds (ESF), the European Regional Develop-
ment Funds (ERDF), the Royal Society, the Scottish Funding
Council, the Scottish Universities Physics Alliance, the Hungarian
Scientific Research Fund (OTKA), the French Lyon Institute of
Origins (LIO), the Belgian Fonds de la Recherche Scientifique
(FRS-FNRS), Actions de Recherche Concertées (ARC) and
Fonds Wetenschappelijk Onderzoek–Vlaanderen (FWO), Bel-
gium, the Paris Île-de-France Region, the National Research,
Development and Innovation Office Hungary (NKFIH), the
National Research Foundation of Korea, the Natural Science and
Engineering Research Council Canada, Canadian Foundation for
Innovation (CFI), the Brazilian Ministry of Science, Technology,
and Innovations, the International Center for Theoretical Physics
South American Institute for Fundamental Research (ICTP-
SAIFR), the Research Grants Council of Hong Kong, the National
Natural Science Foundation of China (NSFC), the Leverhulme
Trust, the Research Corporation, the Ministry of Science and
Technology (MOST), Taiwan, the United States Department of
Energy, and the Kavli Foundation. The authors gratefully
acknowledge the support of the NSF, STFC, INFN, and CNRS
for provision of computational resources.
This work was supported by MEXT, JSPS Leading-edge
Research Infrastructure Program, JSPS Grant-in-Aid for
Specially Promoted Research 26000005, JSPS Grant-in-Aid
for Scientific Research on Innovative Areas 2905:
JP17H06358, JP17H06361, and JP17H06364, JSPS Core-to-
Core Program A. Advanced Research Networks, JSPS Grant-
in-Aid for Scientific Research (S) 17H06133 and 20H05639,
JSPS Grant-in-Aid for Transformative Research Areas (A)
20A203: JP20H05854, the joint research program of the
Institute for Cosmic Ray Research, University of Tokyo,
National Research Foundation (NRF) and Computing Infra-
structure Project of KISTI-GSDC in Korea, Academia Sinica
(AS), AS Grid Center (ASGC), and the Ministry of Science and
Technology (MoST) in Taiwan under grants including AS-
CDA-105-M06, Advanced Technology Center (ATC) of
NAOJ, Mechanical Engineering Center of KEK.
We would like to thank all of the essential workers who put
their health at risk during the COVID-19 pandemic, without
whom we would not have been able to complete this work.Peer reviewe
Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO
Calibration of the LIGO strain data was performed with
a GstLAL-based calibration software pipeline (Viets et al.
2018). Calibration of the Virgo strain data was performed
with C-based software (Acernese et al. 2022b). Data quality
products and event-validation results were computed using the
DMT (https://labcit.ligo.caltech.edu/~jzweizig/DMT-Project.
html), DQR (https://docs.ligo.org/detchar/data-quality-report/),
DQSEGDB (Fisher et al. 2021), gwdetchar (Macloed et al.
2021a), hveto (Smith et al. 2011), iDQ (Essick et al. 2020), and
Omicron (Robinet et al. 2020) software packages and contribut-
ing software tools. Analyses relied upon the LALSuite software
library (LIGO Scientific Collaboration 2018). PESummary was
used to postprocess and collate parameter estimation results (Hoy
& Raymond 2021). For an exhaustive list of the software used
for searching the GW signals and characterizing their source,
see Abbott et al. (2021c). Plots were prepared with Matplotlib
(Hunter 2007), seaborn (Waskom 2021), GWSumm (Macleod
et al. 2021b), and GWpy (Macleod et al. 2021c). NumPy (Harris
et al. 2020) and SciPy (Virtanen et al. 2020) were used in the
preparation of the manuscript.
This material is based upon work supported by NSF’s LIGO
Laboratory which is a major facility fully funded by the
National Science Foundation. The authors also gratefully
acknowledge the support of the Science and Technology
Facilities Council (STFC) of the United Kingdom, the Max-
Planck-Society (MPS), and the State of Niedersachsen/
Germany for support of the construction of Advanced LIGO
and construction and operation of the GEO 600 detector.
Additional support for Advanced LIGO was provided by the
Australian Research Council. The authors gratefully acknowl-
edge the Italian Istituto Nazionale di Fisica Nucleare (INFN),
the French Centre National de la Recherche Scientifique
(CNRS), and the Netherlands Organization for Scientific
Research (NWO) for the construction and operation of the
Virgo detector and the creation and support of the EGO
consortium. The authors also gratefully acknowledge research
support from these agencies as well as by the Council of
Scientific and Industrial Research of India, the Department of
Science and Technology, India, the Science & Engineering
Research Board (SERB), India, the Ministry of Human
Resource Development, India, the Spanish Agencia Estatal de
Investigación (AEI), the Spanish Ministerio de Ciencia e
Innovación and Ministerio de Universidades, the Conselleria de
Fons Europeus, Universitat i Cultura and the Direcció General
de Política Universitaria i Recerca del Govern de les Illes
Balears, the Conselleria d'Innovació, Universitats, Ciència i
Societat Digital de la Generalitat Valenciana and the CERCA
Programme Generalitat de Catalunya, Spain, the National
Science Centre of Poland and the European Union – European
Regional Development Fund; Foundation for Polish Science
(FNP), the Swiss National Science Foundation (SNSF), the
Russian Foundation for Basic Research, the Russian Science
Foundation, the European Commission, the European Social
Funds (ESF), the European Regional Development Funds
(ERDF), the Royal Society, the Scottish Funding Council, the
Scottish Universities Physics Alliance, the Hungarian Scientific
Research Fund (OTKA), the French Lyon Institute of Origins
(LIO), the Belgian Fonds de la Recherche Scientifique (FRS-
FNRS), Actions de Recherche Concertées (ARC) and Fonds
Wetenschappelijk Onderzoek – Vlaanderen (FWO), Belgium,
the Paris Île-de-France Region, the National Research,
Development and Innovation Office Hungary (NKFIH), the
National Research Foundation of Korea, the Natural Science
and Engineering Research Council Canada, Canadian Founda-
tion for Innovation (CFI), the Brazilian Ministry of Science,
Technology, and Innovations, the International Center for
Theoretical Physics South American Institute for Fundamental
Research (ICTP-SAIFR), the Research Grants Council of Hong
Kong, the National Natural Science Foundation of China
(NSFC), the Leverhulme Trust, the Research Corporation, the
Ministry of Science and Technology (MOST), Taiwan, the
United States Department of Energy, and the Kavli Foundation.
The authors gratefully acknowledge the support of the NSF,
STFC, INFN, and CNRS for provision of computational
resources.
This work was supported by MEXT, JSPS Leading-edge
Research Infrastructure Program, JSPS Grant-in-Aid for
Specially Promoted Research 26000005, JSPS Grant-in-Aid
for Scientific Research on Innovative Areas 2905:
JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-
Core Program A, Advanced Research Networks, JSPS Grant-
in-Aid for Scientific Research (S) 17H06133 and 20H05639,
JSPS Grant-in-Aid for Transformative Research Areas (A)
20A203: JP20H05854, the joint research program of the
Institute for Cosmic Ray Research, University of Tokyo,
National Research Foundation (NRF), Computing Infrastruc-
ture Project of Global Science experimental Data hub Center
(GSDC) at KISTI, Korea Astronomy and Space Science
Institute (KASI), and Ministry of Science and ICT (MSIT) in
Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the
National Science and Technology Council (NSTC) in Taiwan
under grants including the Rising Star Program and Science
Vanguard Research Program, Advanced Technology Center
(ATC) of NAOJ, and Mechanical Engineering Center of KEK.Peer reviewe
Preoperative percutaneous portal vein embolization: evaluation of adverse events in 188 patients.
PURPOSE: To retrospectively assess the frequency of adverse events related to percutaneous preoperative portal vein embolization (PPVE). MATERIALS AND METHODS: Institutional review board did not require its approval or patient informed consent for this study. The adverse events that occurred during PPVE or until planned hepatic surgery was performed or cancelled were retrospectively obtained from clinical, imaging, and laboratory data files in 188 patients (109 male and 79 female patients; mean age, 60 years; range, 16-78 years). Liver resection was planned for metastases (n = 137), hepatocarcinoma (n = 31), cholangiocarcinoma (n = 15), fibrolamellar hepatoma (n = 1), and benign disease (n = 4). PPVE was performed with a single-lumen 5-F catheter and a contralateral approach with n-butyl cyanoacrylate mixed with iodized oil as the main embolic agent. The rate of complications in patients with cirrhosis was compared with that in patients without cirrhosis by using the chi(2) test. RESULTS: Adverse events occurred in 24 (12.8%) of 188 patients, including 12 complications and 12 incidental imaging findings. Complications included thrombosis of the portal vein feeding the future remnant liver (n = 1); migration of emboli in the portal vein feeding the future remnant liver, which necessitated angioplasty (n = 2); hemoperitoneum (n = 1); rupture of a metastasis in the gallbladder (n = 1); transitory hemobilia (n = 1); and transient liver failure (n = 6). Incidental findings were migration of small emboli in nontargeted portal branches (n = 10) and subcapsular hematoma (n = 2). Among the 187 patients in whom PPVE was technically successful, there was a significant difference (P < .001) between the occurrence of liver failure after PPVE in patients with cirrhosis (five of 30) and those without (one of 157). Sixteen liver resections were cancelled due to cancer progression (n = 12), insufficient hypertrophy of the nonembolized liver (n = 3), and complete portal thrombosis (n = 1). CONCLUSION: PPVE is a safe adjuvant technique for hypertrophy of the initially insufficient liver reserve. Post-PPVE transient liver failure is more common in patients with cirrhosis than in those without cirrhosis
Chemical composition of selected food-grade sorghum varieties grown under typical Mediterranean conditions
Sorghum is a staple food grain in many semi-arid and tropical areas of the world, notably in Sub-Saharan Africa due to its good agronomic properties in harsh environments. At present, sorghum is widely found in the dry areas of Asia (India and China), the Americas and Australia. Due to its properties as a wheat-free food, interest is increasing in cultivating sorghum in Mediterranean countries. However, little is known about how the environment of Mediterranean countries would influence the chemical composition of sorghum. Thus, research has been conducted to compare the composition of selected food-grade white sorghum hybrids grown in Foggia (southern Italy) to hybrids grown in one of the primary sorghum growing regions of the US; Kansas. The sorghum grown in Italy were found to have a higher protein content than the sample grown in Kansas, though overall grain quality was comparable between the two regions. Immunosorbent assays (ELISA) showed for all sorghum flour samples analyzed, the absence of proteins that are toxic for celiac patients
