515 research outputs found

    121 SPATIAL CORRELATIONS BETWEEN LOCAL IMPACT STRESS AND CELL DEATH DISTRIBUTIONS

    Get PDF

    Simultaneous saccharification and fermentation of steam exploded duckweed: Improvement of the ethanol yield by increasing yeast titre

    Get PDF
    This study investigated the conversion of Lemna minor biomass to bioethanol. The biomass was pre-treated by steam explosion (SE, 210 °C, 10 min) and then subjected to simultaneous saccharification and fermentation (SSF) using CellicÒ CTec 2 (20 U or 0.87 FPU gﰂ1 substrate) cellulase plus b-glucosidase (2 U gﰂ1 substrate) and a yeast inoculum of 10% (v/v or 8.0 ﰀ 107 cells mLﰂ1). At a substrate concentration of 1% (w/v) an ethanol yield of 80% (w/w, theoretical) was achieved. However at a substrate concentration of 20% (w/v), the ethanol yield was lowered to 18.8% (w/w, theoretical). Yields were considerably improved by increasing the yeast titre in the inoculum or preconditioning the yeast on steam exploded liquor. These approaches enhanced the ethanol yield up to 70% (w/w, theoretical) at a substrate concen- tration of 20% (w/v) by metabolising fermentation inhibitors

    Almost commuting unitary matrices related to time reversal

    Full text link
    The behavior of fermionic systems depends on the geometry of the system and the symmetry class of the Hamiltonian and observables. Almost commuting matrices arise from band-projected position observables in such systems. One expects the mathematical behavior of almost commuting Hermitian matrices to depend on two factors. One factor will be the approximate polynomial relations satisfied by the matrices. The other factor is what algebra the matrices are in, either the matrices over A for A the real numbers, A the complex numbers or A the algebra of quaternions. There are potential obstructions keeping k-tuples of almost commuting operators from being close to a commuting k-tuple. We consider two-dimensional geometries and so this obstruction lives in KO_{-2}(A). This obstruction corresponds to either the Chern number or spin Chern number in physics. We show that if this obstruction is the trivial element in K-theory then the approximation by commuting matrices is possible.Comment: 33 pages, 2 figures. In version 2 some formulas have been corrected and some proofs have been rewritten to improve the expositio

    Is the writing on the wall for tabletops?

    Get PDF
    We describe an ethnographic study that explores how low tech and new tech surfaces support participation and collaboration during a workshop breakout session. The low tech surfaces were post-it notes and large sheets of paper. The new tech surfaces were writeable walls and a multi-touch tabletop. Four groups used the different surfaces during three phases: i) brief presentation of position papers and discussion of themes, ii) the creation of a group presentation and iii) a report back session. Participation and collaboration varied depending on the physical, technological and social factors at play when using the different surfaces. We discuss why this is the case, noting how new shareable surfaces may need to be constrained to invite participation in ways that are simply taken for granted because of their familiarity when using low tech materials

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions
    corecore