1,882 research outputs found

    Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    Get PDF
    AbstractE2, along with Erns and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, 818CPIGWTGVIEC828, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP 818CPIGWTGVIEC828 indicates a membrane fusion activity and a critical role in virus replication

    Spin-orbital gapped phase with least symmetry breaking in the one-dimensional symmetrically coupled spin-orbital model

    Full text link
    To describe the spin-orbital energy gap formation in the one-dimensional symmetrically coupled spin-orbital model, we propose a simple mean field theory based on an SU(4) constraint fermion representation of spins and orbitals. A spin-orbital gapped phase is formed due to a marginally relevant spin-orbital valence bond pairing interaction. The energy gap of the spin and orbital excitations grows extremely slowly from the SU(4) symmetric point up to a maximum value and then decreases rapidly. By calculating the spin, orbital, and spin-orbital tensor static susceptibilities at zero temperature, we find a crossover from coherent to incoherent magnetic excitations as the spin-orbital coupling decreasing from large to small values.Comment: 10 pages, Revtex file, 5 figure

    Estimativa da área foliar do pepino em ambiente protegido por medidas lineares sob salinidade e enxertia

    Get PDF
    The measurement of leaf area by linear parameters is a useful tool when plants cannot be destroyed for direct measurement. The objectives of this study were to establish equations to estimate the leaf area of greenhouse-cucumber and to evaluate the effects of salinity and grafting on this estimative. Non-grafted cucumber seedlings, cv. 'Hokushin', were transplanted in a greenhouse and were irrigated with water of different salinities (1.0, 3.2 and 5.0 dS m-1). In the second growing period, the same cultivar was grafted on Cucurbita spp. and the plants were irrigated with water of 1.4, 3.0 and 5.3 dS m-1. Leaves of different sizes were collected from both experiments and leaf area was determined by an integrating area meter. Leaf length (L) and width (W) were also recorded. An equation for estimating the leaf area from L and W was developed for a given salinity level or grafting condition and estimated well the area of leaves collected in the other treatments. The leaf area (LA) of cucumber 'Hokushin' could be estimated using the equation LA = 0.88LW - 4.27, for any grafting and salinity conditions.A determinação da área foliar por medidas lineares é uma ferramenta útil quando as plantas não podem ser destruídas para que a medição direta seja realizada. Os objetivos desse trabalho foram definir equações para a estimativa da área foliar do pepino em ambiente protegido e avaliar os efeitos da salinidade e da a enxertia nessa estimativa. Mudas de pepino, cv. 'Hokushin', não enxertadas, foram transplantadas em um ambiente protegido e irrigadas com água de diferentes salinidades (1,0, 3,2 e 5,0 dS m-1). No segundo período de cultivo, a mesma cultivar foi enxertada sobre Cucurbita spp., sendo as plantas irrigadas com água de 1,4, 3,0 e 5,3 dS m-1. Foram coletadas folhas de diferentes tamanhos dos dois cultivos e dos três tratamentos e a área foliar foi determinada por um medidor de área foliar. O comprimento (C) e a largura (L) da folha também foram registrados. Desenvolveram-se equações pelas quais a área foliar pôde ser estimada a partir de medidas de C e L. A equação desenvolvida para um dado nível de salinidade ou condição de enxertia estimou bem a área das folhas coletadas nos demais tratamentos. A área foliar (AF) do pepino 'Hokushin' pode ser estimada pela função AF = 0,88CL - 4,27, para qualquer condição de enxertia e salinidade

    Quantum computing with mixed states

    Full text link
    We discuss a model for quantum computing with initially mixed states. Although such a computer is known to be less powerful than a quantum computer operating with pure (entangled) states, it may efficiently solve some problems for which no efficient classical algorithms are known. We suggest a new implementation of quantum computation with initially mixed states in which an algorithm realization is achieved by means of optimal basis independent transformations of qubits.Comment: 2 figures, 52 reference

    Charmonium states in QCD-inspired quark potential model using Gaussian expansion method

    Full text link
    We investigate the mass spectrum and electromagnetic processes of charmonium system with the nonperturbative treatment for the spin-dependent potentials, comparing the pure scalar and scalar-vector mixing linear confining potentials. It is revealed that the scalar-vector mixing confinement would be important for reproducing the mass spectrum and decay widths, and therein the vector component is predicted to be around 22%. With the state wave functions obtained via the full-potential Hamiltonian, the long-standing discrepancy in M1 radiative transitions of J/ψJ/\psi and ψ\psi^{\prime} are alleviated spontaneously. This work also intends to provide an inspection and suggestion for the possible ccˉc\bar{c} among the copious higher charmonium-like states. Particularly, the newly observed X(4160) and X(4350) are found in the charmonium family mass spectrum as M(21D2)=4164.9M(2^1D_2)= 4164.9 MeV and M(33P2)=4352.4M(3^3P_2)= 4352.4 MeV, which strongly favor the JPC=2+,2++J^{PC}=2^{-+}, 2^{++} assignments respectively. The corresponding radiative transitions, leptonic and two-photon decay widths have been also predicted theoretically for the further experimental search.Comment: 16 pages,3 figure

    Ponderomotive entangling of atomic motions

    Get PDF
    We propose the use of ponderomotive forces to entangle the motions of different atoms. Two situations are analyzed: one where the atoms belong to the same optical cavity and interact with the same radiation field mode; the other where each atom is placed in own optical cavity and the output field of one cavity enters the other.Comment: Revtex file, five pages, two eps figure

    Grover search with pairs of trapped ions

    Full text link
    The desired interference required for quantum computing may be modified by the wave function oscillations for the implementation of quantum algorithms[Phys.Rev.Lett.84(2000)1615]. To diminish such detrimental effect, we propose a scheme with trapped ion-pairs being qubits and apply the scheme to the Grover search. It can be found that our scheme can not only carry out a full Grover search, but also meet the requirement for the scalable hot-ion quantum computing. Moreover, the ion-pair qubits in our scheme are more robust against the decoherence and the dissipation caused by the environment than single-particle qubits proposed before.Comment: RevTe
    corecore