256 research outputs found

    Match running performance during fixture congestion in elite soccer: Research issues and future directions

    Get PDF
    Match congestion in elite soccer has been proposed to result in residual fatigue and underperformance in ensuing competition due to insufficient recovery time. In this article, matters relating to match congestion and running performance in elite soccer competition are discussed. The authors suggest a need to determine the extent to which elite players are in reality exposed to periods of match congestion hence to potential declines in performance. Despite evidence of exercise-induced muscle damage combined with a decline in physical performance up to 72-hours post-match, research using time-motion analyses suggest running performance represented by distances covered is unaffected over periods of match congestion. The authors recommend analysis of alternative movement variables including accelerations, decelerations and turns that are taxing metabolically and contribute greatly to muscle damage. Moreover, a holistic approach combining subjective ratings with biochemical, hormonal and immunological responses to exercise would be pertinent especially in players frequently exposed to match congestion. Contemporary practitioners typically implement various post-match recovery treatments during dense schedules in an attempt to accelerate recovery and ensure that subsequent running performance is not unduly affected. However, empirical evidence to support their efficacy in maintaining running performance is lacking and the authors recommend controlled intervention studies using match simulations in an attempt to verify their effectiveness. These points are critically addressed using findings from the current scientific literature while gaps in the current body of knowledge and future directions for research are highlighted

    Adsorbate-induced surface stress, surface strain and surface reconstruction : S on Cu(100) and Ni(100)

    Get PDF
    Density functional theory (DFT) calculations have been applied to investigate the known difference in behaviour of S adsorption on Cu(100) and Ni(100). Both surfaces form a 0.25 ML (2 × 2) adsorption phase, but while at higher coverage a 0.5 ML c(2 × 2) phase forms on Ni(100), on Cu(100) only a reconstructed 0.47 ML (√17 × √17)R14° structure occurs. Calculations of the energy, structure, and surface stress of (2 × 2) and c(2 × 2) phases on both substrates show there is an energy advantage on both surfaces to form the higher coverage phase, but that both surfaces show local surface strain around the S atoms in the (2 × 2) phase, a phenomenon previously investigated only on Cu(100). More than forty different structural models of the Cu(100)(√17 × √17)R14°-S phase have been investigated. The pseudo-(100)c(2 × 2) structure previously proposed, containing 16 Cu adatoms per unit mesh in the reconstructed layer, is found to be less energetically favourable than many other possible structures, even after taking account of local structural relaxations. Significantly more favourable is a structure with 12 Cu adatoms per (√17 × √17)R14° unit mesh, previously proposed on the basis of scanning tunnelling microscopy (STM), and found to yield simulated STM images in good agreement with experiment. This model has all S atoms in local 4-fold coordinated hollows relative to the Cu atoms below, half being located above Cu adatoms with the remainder lying above the underlying outermost substrate layer. However, an alternative model with only 4 Cu adatoms and with half the S atoms at 3-fold coordinated sites on the periphery of the Cu adatom cluster, has an even lower energy and gives simulated STM images in excellent agreement with experiment

    Dilution and magnification effects on image analysis applications in activated sludge characterization

    Get PDF
    The properties of activated sludge systems can be characterized using image analysis procedures. When these systems operate with high biomass content, accurate sludge characterization requires samples to be diluted. Selection of the best image acquisition magnification is directly related to the amount of biomass screened. The aim of the present study was to survey the effects of dilution and magnification on the assessment of aggregated and filamentous bacterial content and structure using image analysis procedures. Assessments of biomass content and structure were affected by dilutions. Therefore, the correct operating dilution requires careful consideration. Moreover, the acquisition methodology comprising a 100 magnification allowed data on aggregated and filamentous biomass to be determined and smaller aggregates to be identified and characterized, without affecting the accuracy of lower magnifications regarding biomass representativeness.AGERE (Empresa de Águas, Efluentes e Resíduos de Braga – EM) and AGS(Administração e Gestão de Sistemas de Salubridade, S.A.)Fundação para a Ciência e Tecnologia (FCT

    Quantum saturation and condensation of excitons in Cu2_2O: a theoretical study

    Full text link
    Recent experiments on high density excitons in Cu2_2O provide evidence for degenerate quantum statistics and Bose-Einstein condensation of this nearly ideal gas. We model the time dependence of this bosonic system including exciton decay mechanisms, energy exchange with phonons, and interconversion between ortho (triplet-state) and para (singlet-state) excitons, using parameters for the excitonic decay, the coupling to acoustic and low-lying optical phonons, Auger recombination, and ortho-para interconversion derived from experiment. The single adjustable parameter in our model is the optical-phonon cooling rate for Auger and laser-produced hot excitons. We show that the orthoexcitons move along the phase boundary without crossing it (i.e., exhibit a ``quantum saturation''), as a consequence of the balance of entropy changes due to cooling of excitons by phonons and heating by the non-radiative Auger two-exciton recombination process. The Auger annihilation rate for para-para collisions is much smaller than that for ortho-para and ortho-ortho collisions, explaining why, under the given experimental conditions, the paraexcitons condense while the orthoexcitons fail to do so.Comment: Revised to improve clarity and physical content 18 pages, revtex, figures available from G. Kavoulakis, Physics Department, University of Illinois, Urban

    Learning difficulties : a portuguese perspective of a universal issue

    Get PDF
    In this article we present findings of a study that was conducted with the purpose of deepening the knowledge about the field of learning difficulties in Portugal. Therefore, within these findings we will discuss across several cultural boundaries, themes related with the existence of learning difficulties as a construct, the terminology, the political, social and scientific influences on the field, and the models of identification and of ongoing school support for students. While addressing the above-mentioned themes we will draw attention to the different, yet converging, international understandings of learning difficulties

    Level Set Method for the Evolution of Defect and Brane Networks

    Get PDF
    A theory for studying the dynamic scaling properties of branes and relativistic topological defect networks is presented. The theory, based on a relativistic version of the level set method, well-known in other contexts, possesses self-similar ``scaling'' solutions, for which one can calculate many quantities of interest. Here, the length and area densities of cosmic strings and domain walls are calculated in Minkowski space, and radiation, matter, and curvature-dominated FRW cosmologies with 2 and 3 space dimensions. The scaling exponents agree the naive ones based on dimensional analysis, except for cosmic strings in 3-dimensional Minkowski space, which are predicted to have a logarithmic correction to the naive scaling form. The scaling amplitudes of the length and area densities are a factor of approximately 2 lower than results from numerical simulations of classical field theories. An expression for the length density of strings in the condensed matter literature is corrected.Comment: 46pp LaTeX, revtex4(preprint), 1 eps figure, revised for publication. Note title chang

    Subaru Studies of the Cosmic Dawn

    Get PDF
    An overview on the current status of the census of the early universe population is given. Observational surveys of high redshift objects provide direct opportunities to study the early epoch of the Universe. The target population included are Lyman Alpha Emitters (LAE), Lyman Break Galaxies (LBG), gravitationally lensed galaxies, quasars and gamma-ray bursts (GRB). The basic properties of these objects and the methods used to study them are reviewed. The present paper highlights the fact that the Subaru Telescope group made significant contributions in this field of science to elucidate the epoch of the cosmic dawn and to improve the understanding of how and when infant galaxies evolve into mature ones.Comment: 14 pages, 11 figures, accepted for publication in the Proceedings of the Japan Academy, Series
    corecore