1,298 research outputs found
Study of intercalation and deintercalation of Na_xCoO_2 yH_2O single crystals
Single crystals of NaxCoO2 with beta-phase (x=0.55, 0.60 and 0.65),
alpha'-phase (x=0.75) and alpha-phase (x=0.9, 1.0) have been grown by the
floating zone technique. The Na-extraction and hydration were carried out for
the alpha'-sample to get superconducting phase of NaxCoO2.yH2O (x~0.3, y~1.3).
Hydrated single crystals exhibit cracked layers perpendicular to the c-axis due
to a large expansion when the water is inserted into the structure. A study of
intercalation/deintercalation was performed to determine the stability of the
hydrated phase and effects of hydration on the structure of the compound. X-ray
diffraction and Thermogravimetric experiments are used to monitor the process
of water molecules accommodated in and removed from the crystal lattice. The
initial intercalation process takes place with two-water molecules
corresponding to y=0.6) inserted in a formula unit, followed by a group of four
(y=1.3) to form a cluster of Na(H2O)4. Thermogravimetric analysis suggests that
the deintercalation occurs with the removal of the water molecules one by one
from the hydrated cluster at elevated temperatures of approximately 50, 100,
200 and 300 C, respectively. Our investigations reveal that the hydration
process is dynamic and that water molecule inter- and deintercalation follow
different reaction paths in an irreversible way.Comment: 15 pages, 6 figures, figures with higher resolution by email request
from the corresponding autho
Spiral phase and phase separation of the double exchange model in the large-S limit
The phase diagram of the double exchange model is studied in the large-S
limit at zero temperature in two and three dimensions. We find that the spiral
state has lower energy than the canted antiferromagnetic state in the region
between the antiferromagnetic phase and the ferromagnetic phase. At small
doping, the spiral phase is unstable against phase separation due to its
negative compressibility. When the Hund coupling is small, the system separates
into spiral regions and antiferromagnetic regions. When the Hund coupling is
large, the spiral phase disappears completely and the system separates into
ferromagnetic regions and antiferromagnetic regions.Comment: 7 pages, 3 postscript figures. To be published in Phys. Rev.
Charged Higgs Boson Production in Bottom-Gluon Fusion
We compute the complete next-to-leading order SUSY-QCD corrections for the
associated production of a charged Higgs boson with a top quark via
bottom-gluon fusion. We investigate the applicability of the bottom parton
description in detail. The higher order corrections can be split into real and
virtual corrections for a general two Higgs doublet model and into additional
massive supersymmetric loop contributions. We find that the perturbative
behavior is well under control. The supersymmetric contributions consist of the
universal bottom Yukawa coupling corrections and non-factorizable diagrams.
Over most of the relevant supersymmetric parameter space the Yukawa coupling
corrections are sizeable, while the remaining supersymmetric loop contributions
are negligible.Comment: 18 pages, v2: some discussions added, v3: published versio
Droplet formation in cold asymmetric nuclear matter in the quark-meson-coupling model
The quark-meson-coupling model is used to study droplet formation from the
liquid-gas phase transition in cold asymmetric nuclear matter. The critical
density and proton fraction for the phase transition are determined in the mean
field approximation. Droplet properties are calculated in the Thomas-Fermi
approximation. The electromagnetic field is explicitly included and its effects
on droplet properties are studied. The results are compared with the ones
obtained with the NL1 parametrization of the non-linear Walecka model.Comment: 21 pages, RevTeX including 8 figures in .eps file
Long-term trends in tropical cyclone tracks around Korea and Japan in late summer and early fall
This study investigates long-term trends in tropical cyclones (TCs) over the extratropical western North Pacific (WNP) over a period of 35 years (1982-2016). The area analyzed extended across 30-45 degrees N and 120-150 degrees E, including the regions of Korea and Japan that were seriously affected by TCs. The northward migration of TCs over the WNP to the mid-latitudes showed a sharp increase in early fall. In addition, the duration of TCs over the WNP that migrated northwards showed an increase, specifically in early to mid-September. Therefore, more recently, TC tracks have been observed to significantly extend into the mid-latitudes. The recent northward extension of TC tracks over the WNP in early fall was observed to be associated with changes in environmental conditions that were favorable for TC activities, including an increase in sea surface temperature (SST), decrease in vertical wind shear, expansion of subtropical highs, strong easterly steering winds, and an increase in relative vorticity. In contrast, northward migrations of TCs to Korea and Japan showed a decline in late August, because of the presence of unfavorable environmental conditions for TC activities. These changes in environmental conditions, such as SST and vertical wind shear, can be partially associated with the Pacific decadal oscillation
Ferromagnetic transition in a double-exchange system
We study ferromagnetic transition in three-dimensional double-exchange model.
The influence of strong spin fluctuations on conduction electrons is described
in coherent potential approximation. In the framework of thermodynamic approach
we construct for the system "electrons (in a disordered spin configuration) +
spins" the Landau functional, from the analysis of which critical temperature
of ferromagnetic transition is calculated.Comment: 4 pages, 1 eps figure, LaTeX2e, RevTeX. References added, text
change
Considerations on the quantum double-exchange Hamiltonian
Schwinger bosons allow for an advantageous representation of quantum
double-exchange. We review this subject, comment on previous results, and
address the transition to the semiclassical limit. We derive an effective
fermionic Hamiltonian for the spin-dependent hopping of holes interacting with
a background of local spins, which is used in a related publication within a
two-phase description of colossal magnetoresistant manganites.Comment: 7 pages, 3 figure
Search for Invisible Decays of and in and
Using a data sample of decays collected with the BES
II detector at the BEPC, searches for invisible decays of and
in to and are performed.
The signals, which are reconstructed in final states, are used
to tag the and decays. No signals are found for the
invisible decays of either or , and upper limits at the 90%
confidence level are determined to be for the ratio
and for . These are the first
searches for and decays into invisible final states.Comment: 5 pages, 4 figures; Added references, Corrected typo
Near-field optical power transmission of dipole nano-antennas
Nano-antennas in functional plasmonic applications require high near-field optical power transmission. In this study, a model is developed to compute the near-field optical power transmission in the vicinity of a nano-antenna.
To increase the near-field optical power transmission from a nano-antenna, a tightly focused beam of light is utilized to illuminate a metallic nano-antenna. The modeling and simulation of these structures is performed using 3-D finite element method based full-wave solutions of Maxwell’s equations. Using the optical power transmission model, the interaction of a focused beam of light with plasmonic nanoantennas is investigated. In addition, the tightly focused beam of light is passed through a band-pass filter to identify the effect of various regions of the angular spectrum to the near-field radiation of a dipole nano-antenna. An extensive parametric study is performed to quantify the effects of various parameters on the transmission efficiency of dipole nano-antennas, including length, thickness, width, and the composition of the antenna, as well as the wavelength and half-beam angle of incident light. An optimal dipole nanoantenna geometry is identified based on the parameter studies in this work. In addition, the results of this study show the interaction of the optimized dipole nano-antenna with a magnetic recording medium when it is illuminated with a focused beam of light
Localized D-dimensional global k-defects
We explicitly demonstrate the existence of static global defect solutions of
arbitrary dimensionality whose energy does not diverge at spatial infinity, by
considering maximally symmetric solutions described by an action with
non-standard kinetic terms in a D+1 dimensional Minkowski space-time. We
analytically determine the defect profile both at small and large distances
from the defect centre. We verify the stability of such solutions and discuss
possible implications of our findings, in particular for dark matter and charge
fractionalization in graphene.Comment: 6 pages, published versio
- …
