274 research outputs found

    A simulation of the NiO/Ag interface with point defects

    Get PDF
    The NiO/Ag interface has been modelled using established simulation techniques, which have been modified to include the image interactions between the oxide ions and the induced charge in the metal. The energies of point defects near the interface were calculated and it was found that the surface rumpling was such that defects with a negative net charge were favoured. This will result in a space charge layer with excess cation vacancies which will cancel the interfacial potential. A low energy interface was modelled in which the cation sub-lattice of the second oxide plane was saturated with vacancies and Ni3+. ions. Such a structure may be responsible for the observed excess of oxygen near the NiO/Ni interface, and also for the low wetting angles of metals on NiO, compared with MgO

    Missing energy in black hole production and decay at the Large Hadron Collider

    Full text link
    Black holes could be produced at the Large Hadron Collider in TeV-scale gravity scenarios. We discuss missing energy mechanisms in black hole production and decay in large extra-dimensional models. In particular, we examine how graviton emission into the bulk could give the black hole enough recoil to leave the brane. Such a perturbation would cause an abrupt termination in Hawking emission and result in large missing-energy signatures.Comment: addressed reviewer comments and updated reference

    Sodium atoms and clusters on graphite: a density functional study

    Full text link
    Sodium atoms and clusters (N<5) on graphite (0001) are studied using density functional theory, pseudopotentials and periodic boundary conditions. A single Na atom is observed to bind at a hollow site 2.45 A above the surface with an adsorption energy of 0.51 eV. The small diffusion barrier of 0.06 eV indicates a flat potential energy surface. Increased Na coverage results in a weak adsorbate-substrate interaction, which is evident in the larger separation from the surface in the cases of Na_3, Na_4, Na_5, and the (2x2) Na overlayer. The binding is weak for Na_2, which has a full valence electron shell. The presence of substrate modifies the structures of Na_3, Na_4, and Na_5 significantly, and both Na_4 and Na_5 are distorted from planarity. The calculated formation energies suggest that clustering of atoms is energetically favorable, and that the open shell clusters (e.g. Na_3 and Na_5) can be more abundant on graphite than in the gas phase. Analysis of the lateral charge density distributions of Na and Na_3 shows a charge transfer of about 0.5 electrons in both cases.Comment: 20 pages, 6 figure

    Association and interaction analyses of eight genes under asthma linkage peaks

    Get PDF
    Background: Linkage studies have implicated the 2q33, 9p21, 11q13 and 20q13 regions in the regulation of allergic disease. The aim of this study was to test genetic variants in candidate genes from these regions for association with specific asthma traits. Methods: Ninety-five single nucleotide polymorphisms (SNP) located in eight genes (CD28, CTLA4, ICOS, ADAM23, ADAMTSL1, MS4A2, CDH26 and HRH3) were genotyped in >5000 individuals from Australian (n = 1162), Dutch (n = 99) and Danish (n = 303) families. Traits tested included doctor-diagnosed asthma, atopy, airway obstruction, total serum immunoglobulin (Ig) E levels and eosinophilia. Association was tested using both multivariate and univariate methods, with gene-wide thresholds for significance determined through simulation. Gene-by-gene and gene-by-environment analyses were also performed. Results: There was no overall evidence for association with seven of the eight genes tested when considering all genetic variation assayed in each gene. The exception was MS4A2 on chromosome 11q13, which showed weak evidence for association with IgE (gene-wide P < 0.05, rs502581). There were no significant gene-by-gene or gene-by-environment interaction effects after accounting for the number of tests performed. Conclusions: The individual variants genotyped in the 2q33, 9p21 and 20q13 regions do not explain a large fraction of the variation in the quantitative traits tested or have a major impact on asthma or atopy risk. Our results are consistent with a weak effect of MS4A2 polymorphisms on the variation of total IgE levels. © 2009 John Wiley & Sons A/S

    Specific Heat of the 2D Hubbard Model

    Full text link
    Quantum Monte Carlo results for the specific heat c of the two dimensional Hubbard model are presented. At half-filling it was observed that cT2c \sim T^2 at very low temperatures. Two distinct features were also identified: a low temperature peak related to the spin degrees of freedom and a higher temperature broad peak related to the charge degrees of freedom. Away from half-filling the spin induced feature slowly disappears as a function of hole doping while the charge feature moves to lower temperature. A comparison with experimental results for the high temperature cuprates is discussed.Comment: 6 pages, RevTex, 11 figures embedded in the text, Submitted to Phys. Rev.

    Superconducting and pseudogap phases from scaling near a Van Hove singularity

    Get PDF
    We study the quantum corrections to the Fermi energy of a two-dimensional electron system, showing that it is attracted towards the Van Hove singularity for a certain range of doping levels. The scaling of the Fermi level allows to cure the infrared singularities left in the BCS channel after renormalization of the leading logarithm near the divergent density of states. A phase of d-wave superconductivity arises beyond the point of optimal doping corresponding to the peak of the superconducting instability. For lower doping levels, the condensation of particle-hole pairs due to the nesting of the saddle points takes over, leading to the opening of a gap for quasiparticles in the neighborhood of the singular points.Comment: 4 pages, 6 Postscript figures, the physical discussion of the results has been clarifie

    Microscopic description of d-wave superconductivity by Van Hove nesting in the Hubbard model

    Get PDF
    We devise a computational approach to the Hubbard model that captures the strong coupling dynamics arising when the Fermi level is at a Van Hove singularity in the density of states. We rely on an approximate degeneracy among the many-body states accounting for the main instabilities of the system (antiferromagnetism, d-wave superconductivity). The Fermi line turns out to be deformed in a manner consistent with the pinning of the Fermi level to the Van Hove singularity. For a doping rate δ0.2\delta \sim 0.2, the ground state is characterized by d-wave symmetry, quasiparticles gapped only at the saddle-points of the band, and a large peak at zero momentum in the d-wave pairing correlations.Comment: 4 pages, 2 Postscript figure

    Geometric origin of mechanical properties of granular materials

    Full text link
    Some remarkable generic properties, related to isostaticity and potential energy minimization, of equilibrium configurations of assemblies of rigid, frictionless grains are studied. Isostaticity -the uniqueness of the forces, once the list of contacts is known- is established in a quite general context, and the important distinction between isostatic problems under given external loads and isostatic (rigid) structures is presented. Complete rigidity is only guaranteed, on stability grounds, in the case of spherical cohesionless grains. Otherwise, the network of contacts might deform elastically in response to load increments, even though grains are rigid. This sets an uuper bound on the contact coordination number. The approximation of small displacements (ASD) allows to draw analogies with other model systems studied in statistical mechanics, such as minimum paths on a lattice. It also entails the uniqueness of the equilibrium state (the list of contacts itself is geometrically determined) for cohesionless grains, and thus the absence of plastic dissipation. Plasticity and hysteresis are due to the lack of such uniqueness and may stem, apart from intergranular friction, from small, but finite, rearrangements, in which the system jumps between two distinct potential energy minima, or from bounded tensile contact forces. The response to load increments is discussed. On the basis of past numerical studies, we argue that, if the ASD is valid, the macroscopic displacement field is the solution to an elliptic boundary value problem (akin to the Stokes problem).Comment: RevTex, 40 pages, 26 figures. Close to published paper. Misprints and minor errors correcte

    Using social network sites in Higher Education: An experience in business studies

    Get PDF
    In the past 5 years the impact of Web 2.0 in new generations has been remarkably significant (Pew Research Center, 2010). This paper reports on an experience in the use of Social Network Sites (SNS) to support student involvement with the subject and to develop basic skills. According to students’ opinion, the experience was deemed as positive. They considered that the experience contributed to a higher engagement with the subject and a deeper collaboration with other students and teaching staff. As a result, the majority of students would prefer the use of SNS as a first option if they had to enrol again in the subject. Regarding the relationships between academic performance and use of the SNS, two different student profiles were identified based on usage patterns of the platform. Students with a more intensive use of the site showed a significantly better performance than students with a low usage profile.This work was partially supported by the Junta de Andalucía – FEDER (Proyectos de Excelencia: SEJ-02670

    Eureka and beyond: mining's impact on African urbanisation

    Get PDF
    This collection brings separate literatures on mining and urbanisation together at a time when both artisanal and large-scale mining are expanding in many African economies. While much has been written about contestation over land and mineral rights, the impact of mining on settlement, notably its catalytic and fluctuating effects on migration and urban growth, has been largely ignored. African nation-states’ urbanisation trends have shown considerable variation over the past half century. The current surge in ‘new’ mining countries and the slow-down in ‘old’ mining countries are generating some remarkable settlement patterns and welfare outcomes. Presently, the African continent is a laboratory of national mining experiences. This special issue on African mining and urbanisation encompasses a wide cross-section of country case studies: beginning with the historical experiences of mining in Southern Africa (South Africa, Zambia, Zimbabwe), followed by more recent mineralizing trends in comparatively new mineral-producing countries (Tanzania) and an established West African gold producer (Ghana), before turning to the influence of conflict minerals (Angola, the Democratic Republic of Congo and Sierra Leone)
    corecore