989 research outputs found

    N-qubit entanglement via the Jy2J_y^2-type collective interaction

    Full text link
    We investigate quantum correlations of the NN-qubit states via a collective pseudo-spin interaction (Jy2\propto J_y^2) on arbitrary pure separable states for a given interval of time. Based on this dynamical generation of the NN-qubit maximal entangled states, a quantum secret sharing protocol with NN continuous classical secrets is developed.Comment: 12 pages, 3 figure

    Parity (and time-reversal) anomaly in a semiconductor

    Full text link
    The physics of a parity anomaly, potentially observable in a narrow-gap semiconductor, is revisited. Fradkin, Dagotto, and Boyanovsky have suggested that a Hall current of anomalous parity can be induced by a Peierls distortion on a domain wall. I argue that a perturbation inducing the parity anomaly must break the time reversal symmetry, which rules out the Peierls distortion as a potential cause. I list all possible perturbations that can generate the anomaly.Comment: 11 pages, 1 figure. Sign errors fixe

    Preceding rule induction with instance reduction methods

    Get PDF
    A new prepruning technique for rule induction is presented which applies instance reduction before rule induction. An empirical evaluation records the predictive accuracy and size of rule-sets generated from 24 datasets from the UCI Machine Learning Repository. Three instance reduction algorithms (Edited Nearest Neighbour, AllKnn and DROP5) are compared. Each one is used to reduce the size of the training set, prior to inducing a set of rules using Clark and Boswell's modification of CN2. A hybrid instance reduction algorithm (comprised of AllKnn and DROP5) is also tested. For most of the datasets, pruning the training set using ENN, AllKnn or the hybrid significantly reduces the number of rules generated by CN2, without adversely affecting the predictive performance. The hybrid achieves the highest average predictive accuracy

    A Knob for Changing Light Propagation from Subluminal to Superluminal

    Get PDF
    We show how the application of a coupling field connecting the two lower metastable states of a lambda-system can produce a variety of new results on the propagation of a weak electromagnetic pulse. In principle the light propagation can be changed from subluminal to superluminal. The negative group index results from the regions of anomalous dispersion and gain in susceptibility.Comment: 6 pages,5 figures, typed in RevTeX, accepted in Phys. Rev.

    Damping of spin waves and singularity of the longitudinal modes in the dipolar critical regime of the Heisenberg-ferromagnet EuS

    Full text link
    By inelastic scattering of polarized neutrons near the (200)-Bragg reflection, the susceptibilities and linewidths of the spin waves and the longitudinal spin fluctuations were determined separately. By aligning the momentum transfers q perpendicular to both \delta S_sw and the spontaneous magnetization M_s, we explored the statics and dynamics of these modes with transverse polarizations with respect to q. In the dipolar critical regime, where the inverse correlation length kappa_z(T) and q are smaller than the dipolar wavenumber q_d, we observe:(i) the static susceptibility of \delta S_sw^T(q) displays the Goldstone divergence while for \delta S_z^T(q) the Ornstein-Zernicke shape fits the data with a possible indication of a thermal(mass-)renormalization at the smallest q-values, i.e. we find indications for the predicted 1/q divergence of the longitudinal susceptibility; (ii) the spin wave dispersion as predicted by the Holstein-Primakoff theory revealing q_d=0.23(1)\AA^{-1}in good agreement with previous work in the paramagnetic and ferromagnetic regime of EuS; (iii) within experimental error, the (Lorentzian) linewidths of both modes turn out to be identical with respect to the q^2-variation, the temperature independence and the absolute magnitude. Due to the linear dispersion of the spin waves they remain underdamped for q<q_d. These central results differ significantly from the well known exchange dominated critical dynamics, but are quantitatively explained in terms of dynamical scaling and existing data for T>=T_C. The available mode-mode coupling theory, which takes the dipolar interactions fully into account, describes the gross features of the linewidths but not all details of the T- and q-dependencies. PACS: 68.35.Rh, 75.40.GbComment: 10 pages, 7 figure

    Self-organized model of cascade spreading

    Full text link
    We study simultaneous price drops of real stocks and show that for high drop thresholds they follow a power-law distribution. To reproduce these collective downturns, we propose a minimal self-organized model of cascade spreading based on a probabilistic response of the system elements to stress conditions. This model is solvable using the theory of branching processes and the mean-field approximation. For a wide range of parameters, the system is in a critical state and displays a power-law cascade-size distribution similar to the empirically observed one. We further generalize the model to reproduce volatility clustering and other observed properties of real stocks.Comment: 8 pages, 6 figure

    Study of the D^0 \to pi^-pi^+pi^-pi^+ decay

    Full text link
    Using data from the FOCUS (E831) experiment at Fermilab, we present new measurements for the Cabibbo-suppressed decay mode D0ππ+ππ+D^0 \to \pi^-\pi^+\pi^-\pi^+. We measure the branching ratio Γ(D0π+ππ+π)/Γ(D0Kπ+ππ+)=0.0914±0.0018±0.0022\Gamma(D^0 \to\pi^+\pi^- \pi^+\pi^-)/\Gamma(D^0 \to K^-\pi^+\pi^-\pi^+) = 0.0914 \pm 0.0018 \pm 0.0022. An amplitude analysis has been performed, a first for this channel, in order to determine the resonant substructure of this decay mode. The dominant component is the decay D0a1(1260)+πD^0 \to a_1(1260)^+ \pi^-, accounting for 60% of the decay rate. The second most dominant contribution comes from the decay D0ρ(770)0ρ(770)0D^0 \to \rho(770)^0\rho(770)^0, with a fraction of 25%. We also study the a1(1260)a_1(1260) line shape and resonant substructure. Using the helicity formalism for the angular distribution of the decay D0ρ(770)0ρ(770)0D^0 \to \rho(770)^0\rho(770)^0, we measure a longitudinal polarization of PL=(71±4±2)P_L = (71 \pm 4\pm 2)%.Comment: 38 pages, 8 figures. accepted for publication in Physical Review

    Methane sources in gas hydrate-bearing cold-seeps : evidence from radiocarbon and stable isotopes

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Chemistry 115 (2009): 102-109, doi:10.1016/j.marchem.2009.07.001.Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (≤1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations. In combination with δ13C- and δD-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1-2 percent modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6 meters of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.This work was supported by the Office of Naval Research and Naval Research Laboratory (NRL). Partial support was also provided by the USGS Mendenhall Postdoctoral Research Fellowship Program to JWP, and NSF Chemical Oceanography (OCE-0327423) and Integrated Carbon Cycle Research (EAR- 0403949) program support to JEB
    corecore