16 research outputs found
On the modification of the Efimov spectrum in a finite cubic box
Three particles with large scattering length display a universal spectrum of
three-body bound states called "Efimov trimers''. We calculate the modification
of the Efimov trimers of three identical bosons in a finite cubic box and
compute the dependence of their energies on the box size using effective field
theory. Previous calculations for positive scattering length that were
perturbative in the finite volume energy shift are extended to arbitrarily
large shifts and negative scattering lengths. The renormalization of the
effective field theory in the finite volume is explicitly verified. Moreover,
we investigate the effects of partial wave mixing and study the behavior of
shallow trimers near the dimer energy. Finally, we provide numerical evidence
for universal scaling of the finite volume corrections.Comment: 21 pages, 8 figures, published versio
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Effective Field Theory and the Gamow Shell Model: The 6He Halo Nucleus
We combine Halo/Cluster Effective Field Theory (H/CEFT) and the Gamow Shell
Model (GSM) to describe the ground state of as a three-body
halo system. We use two-body interactions for the neutron-alpha particle and
two-neutron pairs obtained from H/CEFT at leading order, with parameters
determined from scattering in the p and s channels, respectively.
The three-body dynamics of the system is solved using the GSM formalism, where
the continuum states are incorporated in the shell model valence space. We find
that in the absence of three-body forces the system collapses, since the
binding energy of the ground state diverges as cutoffs are increased. We show
that addition at leading order of a three-body force with a single parameter is
sufficient for proper renormalization and to fix the binding energy to its
experimental value
