37 research outputs found

    DNA methylation of hypertension-related genes and effect of riboflavin supplementation in adults stratified by genotype for the MTHFR C677T polymorphism.

    Get PDF
    BACKGROUND: The interaction between genetic, epigenetic and environmental factors plays an important role in the aetiology of hypertension. GWAS and observational studies link the C677T polymorphism in methylenetetrahydrofolate reductase (MTHFR) with hypertension, while riboflavin, the MTHFR cofactor, has been shown to reduce blood pressure and global DNA methylation in homozygous (TT genotype) individuals. It is currently unclear whether riboflavin modulates DNA methylation of other hypertension-related genes. OBJECTIVES: To compare DNA methylation of hypertension-related genes in adults stratified by MTHFR genotype and effect of riboflavin intervention in adults with the variant MTHFR 677TT genotype. METHOD: Pyrosequencing was carried out for hypertension-related genes (ACE, AGTR1, GCK, GNA12, IGF2, MMP9 and NOS3) in blood samples from participants in previous trials (CC, n = 40; TT, n = 40). The effect of intervention with riboflavin (1.6 mg/d for16 weeks) or placebo on DNA methylation was investigated in adults with the variant MTHFR 677TT genotype (n = 80). RESULTS: Individuals with the MTHFR 677TT v CC genotype had significantly higher average DNA methylation at NOS3 (+1.66%, P = 0.044). In response to riboflavin supplementation in TT individuals, there was an increase in average DNA methylation at IGF2 (+1.09%, P = 0.019) and a decrease at ACE (-0.44%, P = 0.021) in females only. Specific CpG sites were hypomethylated in GNA12 and hypermethylated in AGTR1. CONCLUSION: This study provides the first RCT evidence that riboflavin alters DNA methylation of hypertension-related genes in adults with the MTHFR 677TT genotype, providing some insight into mechanisms linking hypertension with the genotype-specific response of BP to riboflavin

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Factors controlling the distribution of ozone in the West African lower troposphere during the AMMA (African Monsoon Multidisciplinary Analysis) wet season campaign

    No full text
    International audienceOzone and its precursors were measured on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft during the monsoon season 2006 as part of the African Monsoon Multidisciplinary Analysis (AMMA) campaign. One of the main features observed in the west African boundary layer is the increase of the ozone mixing ratios from 25 ppbv over the forested area (south of 12° N) up to 40 ppbv over the Sahelian area. We employ a two-dimensional (latitudinal versus vertical) meteorological model coupled with an O3-NOx-VOC chemistry scheme to simulate the distribution of trace gases over West Africa during the monsoon season and to analyse the processes involved in the establishment of such a gradient. Including an additional source of NO over the Sahelian region to account for NO emitted by soils we simulate a mean NOx concentration of 0.7 ppbv at 16° N versus 0.3 ppbv over the vegetated region further south in reasonable agreement with the observations. As a consequence, ozone is photochemically produced with a rate of 0.25 ppbv h−1 over the vegetated region whilst it reaches up to 0.75 ppbv h−1 at 16° N. We find that the modelled gradient is due to a combination of enhanced deposition to vegetation, which decreases the ozone levels by up to 11 pbbv, and the aforementioned enhanced photochemical production north of 12° N. The peroxy radicals required for this enhanced production in the north come from the oxidation of background CO and CH4 as well as from VOCs. Sensitivity studies reveal that both the background CH4 and partially oxidised VOCs, produced from the oxidation of isoprene emitted from the vegetation in the south, contribute around 5-6 ppbv to the ozone gradient. These results suggest that the northward transport of trace gases by the monsoon flux, especially during nighttime, can have a significant, though secondary, role in determining the ozone gradient in the boundary layer. Convection, anthropogenic emissions and NO produced from lightning do not contribute to the establishment of the discussed ozone gradient

    A review of evidence on the environmental impact of Ireland’s Rural Environment Protection Scheme (REPS)

    Get PDF
    peer-reviewedSince its inception in 1994, there has been strong demand for evidence of the environmental effectiveness of the Rural Environment Protection Scheme (REPS), which paid farmers in the Republic of Ireland over €3 billion by 2010. A variety of research projects have been undertaken that investigate the environmental effects of REPS through an examination of either specific environmental measures or specific geographical areas. A review of available publications confirmed the absence of a comprehensive, national-scale study of the environmental impacts of REPS. Because of this, there is insufficient evidence with which to judge the environmental effectiveness of the national-scale implementation of the whole scheme. For some specific measures, however, sufficient evidence is available to inform an objective assessment in some cases, and to help learn how to improve environmental effectiveness in most cases. The majority of the REPS payments are now dedicated toward biodiversity objectives. Thus, biodiversity measures and options should be a priority for any national-scale environmental assessment of the scheme. Such a study would help identify the environmental benefits of REPS, the specific elements of REPS that are performing adequately, and those elements that are in need of improvement. Given the considerable overlap between REPS measures and options and those included in the 2010 Agri-Environment Options Scheme (AEOS), assessment of REPS measures could also be used to inform the likely environmental performance of the AEOS
    corecore