83 research outputs found

    Clustering properties of a generalised critical Euclidean network

    Full text link
    Many real-world networks exhibit scale-free feature, have a small diameter and a high clustering tendency. We have studied the properties of a growing network, which has all these features, in which an incoming node is connected to its iith predecessor of degree kik_i with a link of length ℓ\ell using a probability proportional to kiÎČℓαk^\beta_i \ell^{\alpha}. For α>−0.5\alpha > -0.5, the network is scale free at ÎČ=1\beta = 1 with the degree distribution P(k)∝k−γP(k) \propto k^{-\gamma} and Îł=3.0\gamma = 3.0 as in the Barab\'asi-Albert model (α=0,ÎČ=1\alpha =0, \beta =1). We find a phase boundary in the α−ÎČ\alpha-\beta plane along which the network is scale-free. Interestingly, we find scale-free behaviour even for ÎČ>1\beta > 1 for α<−0.5\alpha < -0.5 where the existence of a new universality class is indicated from the behaviour of the degree distribution and the clustering coefficients. The network has a small diameter in the entire scale-free region. The clustering coefficients emulate the behaviour of most real networks for increasing negative values of α\alpha on the phase boundary.Comment: 4 pages REVTEX, 4 figure

    Growing Scale-Free Networks with Small World Behavior

    Get PDF
    In the context of growing networks, we introduce a simple dynamical model that unifies the generic features of real networks: scale-free distribution of degree and the small world effect. While the average shortest path length increases logartihmically as in random networks, the clustering coefficient assumes a large value independent of system size. We derive expressions for the clustering coefficient in two limiting cases: random (C ~ (ln N)^2 / N) and highly clustered (C = 5/6) scale-free networks.Comment: 4 pages, 4 figure

    Mean-field theory for clustering coefficients in Barabasi-Albert networks

    Full text link
    We applied a mean field approach to study clustering coefficients in Barabasi-Albert networks. We found that the local clustering in BA networks depends on the node degree. Analytic results have been compared to extensive numerical simulations finding a very good agreement for nodes with low degrees. Clustering coefficient of a whole network calculated from our approach perfectly fits numerical data.Comment: 8 pages, 3 figure

    Nonequilibrium transitions in complex networks: a model of social interaction

    Get PDF
    We analyze the non-equilibrium order-disorder transition of Axelrod's model of social interaction in several complex networks. In a small world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.Comment: 7 pages revtex4, 10 figures, related material at http://www.imedea.uib.es/PhysDept/Nonlinear/research_topics/Social

    Emergence of influential spreaders in modified rumor models

    Full text link
    The burst in the use of online social networks over the last decade has provided evidence that current rumor spreading models miss some fundamental ingredients in order to reproduce how information is disseminated. In particular, recent literature has revealed that these models fail to reproduce the fact that some nodes in a network have an influential role when it comes to spread a piece of information. In this work, we introduce two mechanisms with the aim of filling the gap between theoretical and experimental results. The first model introduces the assumption that spreaders are not always active whereas the second model considers the possibility that an ignorant is not interested in spreading the rumor. In both cases, results from numerical simulations show a higher adhesion to real data than classical rumor spreading models. Our results shed some light on the mechanisms underlying the spreading of information and ideas in large social systems and pave the way for more realistic diffusion models.Comment: 14 Pages, 6 figures, accepted for publication in Journal of Statistical Physic

    Live and Dead Nodes

    Get PDF
    In this paper, we explore the consequences of a distinction between `live' and `dead' network nodes; `live' nodes are able to acquire new links whereas `dead' nodes are static. We develop an analytically soluble growing network model incorporating this distinction and show that it can provide a quantitative description of the empirical network composed of citations and references (in- and out-links) between papers (nodes) in the SPIRES database of scientific papers in high energy physics. We also demonstrate that the death mechanism alone can result in power law degree distributions for the resulting network.Comment: 12 pages, 3 figures. To be published in Computational and Mathematical Organization Theor

    The effect of aging on network structure

    Full text link
    In network evolution, the effect of aging is universal: in scientific collaboration network, scientists have a finite time span of being active; in movie actors network, once popular stars are retiring from stage; devices on the Internet may become outmoded with techniques developing so rapidly. Here we find in citation networks that this effect can be represented by an exponential decay factor, e−ÎČτe^{-\beta \tau}, where τ\tau is the node age, while other evolving networks (the Internet for instance) may have different types of aging, for example, a power-law decay factor, which is also studied and compared. It has been found that as soon as such a factor is introduced to the Barabasi-Albert Scale-Free model, the network will be significantly transformed. The network will be clustered even with infinitely large size, and the clustering coefficient varies greatly with the intensity of the aging effect, i.e. it increases linearly with ÎČ\beta for small values of ÎČ\beta and decays exponentially for large values of ÎČ\beta . At the same time, the aging effect may also result in a hierarchical structure and a disassortative degree-degree correlation. Generally the aging effect will increase the average distance between nodes, but the result depends on the type of the decay factor. The network appears like a one-dimensional chain when exponential decay is chosen, but with power-law decay, a transformation process is observed, i.e., from a small-world network to a hypercubic lattice, and to a one-dimensional chain finally. The disparities observed for different choices of the decay factor, in clustering, average node distance and probably other aspects not yet identified, are believed to bear significant meaning on empirical data acquisition.Comment: 8 pages, 9 figures,V2, accepted for publication in Phys. Rev.

    Gaussian Tunneling Model of c-Axis Twist Josephson Junctions

    Full text link
    We calculate the critical current density JcJJ^J_c for c-axis Josephson tunneling between identical high temperature superconductors twisted an angle ϕ0\phi_0 about the c-axis. We model the tunneling matrix element squared as a Gaussian in the change of wavevector q parallel to the junction, <∣t(q)∣2>∝exp⁥(−q2a2/2π2σ2)<|t({\bf q})|^2>\propto\exp(-{\bf q}^2a^2/2\pi^2\sigma^2). The JcJ(ϕ0)/JcJ(0)J^J_c(\phi_0)/J^J_c(0) obtained for the s- and extended-s-wave order parameters (OP's) are consistent with the Bi2_2Sr2_2CaCu2_2O8+ÎŽ_{8+\delta} data of Li {\it et al.}, but only for strongly incoherent tunneling, σ2≄0.25\sigma^2\ge0.25. A dx2−y2d_{x^2-y^2}-wave OP is always inconsistent with the data. In addition, we show that the apparent conventional sum rule violation observed by Basov et al. might be understandable in terms of incoherent c-axis tunneling, provided that the OP is not dx2−y2d_{x^2-y^2}-wave.Comment: 6 pages, 6 figure

    Solution of voter model dynamics on annealed small-world networks

    Full text link
    An analytical study of the behavior of the voter model on the small-world topology is performed. In order to solve the equations for the dynamics, we consider an annealed version of the Watts-Strogatz (WS) network, where long-range connections are randomly chosen at each time step. The resulting dynamics is as rich as on the original WS network. A temporal scale τ\tau separates a quasi-stationary disordered state with coexisting domains from a fully ordered frozen configuration. τ\tau is proportional to the number of nodes in the network, so that the system remains asymptotically disordered in the thermodynamic limit.Comment: 11 pages, 4 figures, published version. Added section with extension to generic number of nearest neighbor

    Properties of highly clustered networks

    Full text link
    We propose and solve exactly a model of a network that has both a tunable degree distribution and a tunable clustering coefficient. Among other things, our results indicate that increased clustering leads to a decrease in the size of the giant component of the network. We also study SIR-type epidemic processes within the model and find that clustering decreases the size of epidemics, but also decreases the epidemic threshold, making it easier for diseases to spread. In addition, clustering causes epidemics to saturate sooner, meaning that they infect a near-maximal fraction of the network for quite low transmission rates.Comment: 7 pages, 2 figures, 1 tabl
    • 

    corecore