research

Clustering properties of a generalised critical Euclidean network

Abstract

Many real-world networks exhibit scale-free feature, have a small diameter and a high clustering tendency. We have studied the properties of a growing network, which has all these features, in which an incoming node is connected to its iith predecessor of degree kik_i with a link of length \ell using a probability proportional to kiβαk^\beta_i \ell^{\alpha}. For α>0.5\alpha > -0.5, the network is scale free at β=1\beta = 1 with the degree distribution P(k)kγP(k) \propto k^{-\gamma} and γ=3.0\gamma = 3.0 as in the Barab\'asi-Albert model (α=0,β=1\alpha =0, \beta =1). We find a phase boundary in the αβ\alpha-\beta plane along which the network is scale-free. Interestingly, we find scale-free behaviour even for β>1\beta > 1 for α<0.5\alpha < -0.5 where the existence of a new universality class is indicated from the behaviour of the degree distribution and the clustering coefficients. The network has a small diameter in the entire scale-free region. The clustering coefficients emulate the behaviour of most real networks for increasing negative values of α\alpha on the phase boundary.Comment: 4 pages REVTEX, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020