
ar
X

iv
:p

hy
si

cs
/0

50
50

49
 v

1 
  6

 M
ay

 2
00

5

Live and Dead Nodes

S. Lehmann∗and A. D. Jackson†

Abstract

In this paper, we explore the consequences of a distinction between ‘live’ and ‘dead’

network nodes; ‘live’ nodes are able to acquire new links whereas ‘dead’ nodes are

static. We develop an analytically soluble growing network model incorporating this

distinction and show that it can provide a quantitative description of the empirical net-

work composed of citations and references (in- and out-links) between papers (nodes)

in the SPIRES database of scientific papers in high energy physics. We also demonstrate

that the death mechanism alone can result in power law degree distributions for the

resulting network.

1 Introduction

The study and modeling of complex networks has expanded rapidly in the

new millennium and is now firmly established as a science in its own right

(Watts, 1999; Albert & Barabási, 2002; Dorogovtsev & Mendes, 2002; Newman, 2003).

One of the oldest examples of a large complex network is the network of ci-

tations and references (in- and out-links) between scientific papers (nodes)

(de Solla Price, 1965; Redner, 1998; Lehmann et al., 2003; Lehmann et al., 2005;

Redner, 2004). A very successful model describing networks with power-law

degree distributions is based on the notion of preferential attachment. The princi-

ples underlying this model were first introduced by Simon (Simon, 1957), ap-
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plied to citation networks by de Solla Price (de Solla Price, 1976)1, and inde-

pendently rediscovered by Barabási and Albert (Barabási & Albert, 1999). Var-

ious modifications of the preferential attachment model have appeared more

recently. In the present context, the key papers on preferential attachment are

(Lehmann et al., 2003; Lehmann et al., 2005; Krapivsky et al., 2000; Krapivsky & Redner, 2001;

Klemm & Eguíluz, 2002). Simplicity is both the primary strength and the pri-

mary weakness of the preferential attachment model. For example, preferen-

tial attachment models tend to assume that networks are homogeneous. When

networks have significant and identifiable inhomogeneities (as is the case for

the citation network), the data can require augmentation of the preferential at-

tachment model to account for them.

The primary conclusion of Ref. (Lehmann et al., 2003) is that the majority

of nodes in a citation network ‘die’ after a short time, never to be cited again.

A small population of papers remains ‘alive’ and continues to be cited many

years after publication. In Ref. (Lehmann et al., 2005) it was established that

this distinction between live and dead papers is an important inhomogene-

ity in the citation network that is not accounted for by the simple preferential

attachment model. Interestingly, a similar distinction between live and dead

nodes was recently independently suggested by (Redner, 2004). In this paper,

we will explore how the distinction between live and dead papers manifests

itself in network models and thus suggest an extension of the preferential at-

tachment model.

2 The SPIRES data

The work in this paper is based on data obtained from the SPIRES2 database of

papers in high energy physics. More specifically, our dataset is the network of

all citable papers from the theory subfield, ultimo October 2003. After filtering

out all papers for which no information of time of publication is available and

removing all references to papers not in SPIRES, a final network of 275 665

1More precisely, de Solla Price was the first person to re-think Simon’s model and use it as a

basis of description for any kind of network, cf. (Newman, 2003).
2SPIRES is an acronym for ‘Stanford Physics Information REtrieval System’ and is the oldest

computerized database in the world. The SPIRES staff has been cataloguing all significant papers

in high energy physics and their lists of references since 1974. The database is open to the public

and can be found at http://www.slac.stanford.edu/spires/.
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nodes and 3 434 175 edges remains.

Above we described a dead node as one that no longer receives citations,

but how does one define a dead node in real data? We have tested several def-

initions, and the results are qualitatively independent of the definition chosen.

Therefore, we can simply define live papers as papers cited in 2003. While

we acknowledge the existence of papers that receive citations after a long dor-

mant period, such cases are rare and do not affect the large scale statistics. In

Figure 2, the (normalized) degree distributions of live and dead papers in the

SPIRES data are plotted, and it is clear that the two distributions differ signifi-

cantly. Having isolated the dead papers, we are not only able to plot them; we

can also determine the empirical ratio of live to dead papers as a function of

the number of citations per paper, k. In Figure 1 this ratio is displayed with k

ranging from 1 to 150 (Papers with zero citations are dead by definition.) Over
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Figure 1: Displayed above is ratio of live to dead papers as a function of k.

Error bars are calculated from square roots of the citation counts in each bin.

Also, a straight line is present to illustrate the linear relationship between the

live and dead populations for low values of k.

most of this range, the data is well described by a straight line. Note that the

data for dead papers with high citation counts is very sparse. For example,
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only 0.15% of the dead papers have more than 100 citations, so the statistics

beyond this point are highly unreliable. More generally, a linear plot of the

ratio of live to dead papers provides a pessimistic representation of the data.

We therefore conclude that the ratio of dead to live papers is relatively well de-

scribed by the simple form 1/(k + 1) for all but the largest values of k, for which

the number of dead papers is overestimated by a factor of two to three. In the

following section, we will make use of this relation to extend the preferential

attachment model to include dead nodes.

3 The Model

The basic elements of the preferential attachment model are growth and prefer-

ential attachment (Barabási & Albert, 1999). The simplest model starts out with

a number of initial nodes and at each update, a new node is added to the

database. Each new node has m out-links that connect to the nodes already

in the database. Each new node enters with k = 0 real in-links. This is the

growth element of the model. Note that, since we have chosen to eliminate all

references to papers not in SPIRES from the dataset, there is a sum rule such

that the average number of citations per paper is also m. Preferential attachment

enters the model through the assumption that the probability for a given node

already in the database to receive one of the m new in-links is proportional to

its current number of in-links. In order for the newest nodes (with k = 0 in-

links) to be able to begin attracting new citations, we load each node into the

database with k0 = 1 ‘ghost’ in-links that can be subtracted after running the

model. The probability of acquiring new citations is proportional to the total

number of in-links, both real and ghost in-links.

One of the simplest ways to implement this simple incarnation of the pref-

erential attachment model described above is to regard k0 as a free parameter.

This allows us to estimate when the effects of preferential attachment become

important. Since there is no a priori reason why a paper with 2 citations (in-

links) should have a significant advantage over a paper with 1 citation, it is

preferable to let the data decide. Thus, in our model, the probability that a live

paper with k citations acquires a new citation at each time step is proportional

to k + k0 with k0 > 0. Also, note that we can think of the displacement k0

as a way to interpolate between full preferential attachment (k0 = 1) and no
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preferential attachment (k0 → ∞).

The significant extension of the simple model to be considered here is that,

in our model, each paper has some probability of dying at every time step. From

Section 2, we have a very good idea of what this probability should be: Figure 1

shows us that for a paper with k citations, this probability is proportional to

1/(k + 1) to a reasonable approximation. With this qualitative description of

the model in hand, we proceed to its solution.

4 Rate Equations

One very powerful method for solving preferential attachment network mod-

els is the rate equation approach, introduced in the context of networks by (Krapivsky et al., 2000).

Let Lk and Dk be the respective probabilities of finding a live or a dead paper

with k real citations. As explained above, we load each paper into the database

with k = 0 real citations and m references. The rate equations become

Lk = m(λk−1Lk−1 − λkLk) − ηkLk + δk,0 (1)

Dk = ηkLk, (2)

where λk and ηk are rate constants. Since every paper has a finite number of

citations, the probabilities Lk and Dk become exactly zero for sufficiently large

k; we also define Lk to be zero for k < 0. In this way, all sums can run from

k = 0 to infinity. These equations trivially satisfy the normalization condition

∑
k

(Lk + Dk) = 1, (3)

for any choice of ηk and λk. However, we also demand that the mean number

of references is equal to the mean number of papers

∑
k

k(Lk + Dk) = m. (4)

This constraint must be imposed by an overall scaling of ηk and λk. The model

described in Section 3 corresponds to a choice of ηk and λk, where

mλk = a(k + k0) (5)

is the preferential attachment term and

ηk =
b

k + 1
(6)
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corresponds to the previously described death mechanism. We insert Equa-

tions (5) and (6) into Equation (1) and perform the recursion to find

Lk =
Γ(k + 2)

ak1k2

Γ(k + k0)

Γ(k0)

Γ(1 − k1)

Γ(k − k1 + 1)

Γ(1 − k2)

Γ(k − k2 + 1)
, (7)

and of course Dk = bLk/(k + 1). The two new constants, k1 and k2 are solutions

to the quadratic equation

(a(k + k0) + 1)(k + 1) + b = 0 (8)

as a function of k.

5 The k0 → ∞ Limit

Before moving on, let us explore the limit where k0 → ∞ and preferential at-

tachment is turned off. In this regime, the network is, of course, completely

dominated by the death mechanism. We can either obtain this limit by again

solving Equations (1) and (2) with λk = constant and ηk = b/(k + 1), or we can

make the more elegant replacement α = ak0 in Equation (7), and then take the

limit k0 → ∞ for fixed α. The two approaches are equivalent. We find

Lk =
1

α

(

α

1 + α

)k+1 ( b
1+α )!(k + 1)!

( b
1+α + k + 1)!

, (9)

and the Dk are still simply bLk/(k + 1). With this expression for Lk, let us

consider the limit of α → ∞ and b → ∞ with the ratio r = b/(α + 1) ≈ b/α

fixed. In this limit, it is tempting to replace the term α/(α + 1) by one3. In this

case, the use of identities, such as

∞

∑
k=1

k!

(k + r)!
=

1

(1 − r)r!
(10)

3For present purposes, this is appropriate when r ≥ 2. When r < 2, the neglected factor is

essential for ensuring the convergence of the average number of citations for the live and dead

papers mL and mD.
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enable us to compute the fraction of dead papers f , and the average numbers

of citations for live and dead papers. The results are simply

1 − f =
1

α − 1
(11)

mL =
2

r − 2
(12)

mD =
1

r − 1
, (13)

and the average number of citations for all papers is evidently m = (1− f )mL +

f mD. The fraction of dead papers is f → 1 −O(1/b) and the average number

of citations for all papers approaches mD.

The most important result, however, is that in this limit we find that

Lk ∼
1

kr
and Dk ∼

b

kr+1
, (14)

where we assume that k > r. Thus, we see that power law distributions for both live

and dead papers emerge naturally in the limit of f → 1. In the literature, power laws

in the degree distributions of networks are often regarded as an indication that

preferential attachment has played an essential part in the generation of the

network in question. It is thus of considerable interest to see an alternative and

quite different way of obtaining them.

6 The Full Model

Let us now return to the full model and see how it compares to the data from

SPIRES. With all zero cited papers in the dead category, the data yields the

following average values: mL = 34.1, mD = 4.5 and m = 12.8. The fraction

of live papers is f = 27.0%. With an rms. error of only 21%, we can do a least

squares fit of Lk to the distribution of live papers with parameters k0 = 65.6,

a = 0.436, and b = 12.4. Although only the live data (the squares in Figure 2) is

fitted, the agreement with the empirical data in Figures 2 and 3 is quite striking.

From the model parameters k0, a, b, we can calculate mean citation numbers

for the fit of 32.9, 4.25, and 12.8 for the live, dead, and total population respec-

tively; the fraction of live papers is found to be 29.8%. More interestingly, we

learn from the fit that 7.5% of the papers with 0 citations are actually alive. If we

assign this fraction of the zero-cited papers to the live population, we find the
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Figure 2: Log-log plots of the normalized degree distributions of live and dead

papers. The filled squares represent the live data and the stars represent the

dead data. Both lines are the result of a fit to the live data (filled squares) alone.

following corrected values for the average values 31.5, 4.6 and 12.5 for the live,

dead, and total population respectively; the fraction of live papers is adjusted

to become 29.2%. Again, this is a striking agreement with the data. There is so

little strain in the fit that we could have determined the model parameters from

the empirical values of mL, mD, and f . Doing this yields only small changes in

the model parameters and results in a description of comparable quality!

Figure 2 reveals that fitting to the live distributions, results in systematic

errors for high values of k when we extend the fit to describe the dead papers,

but this is not surprising. Recall the similarly systematic deviations from the

straight line seen in Figure 1. This figure also explains why the fit to the total

distribution shows no deviations from the fit for high k-values even though

the total fit includes both live and dead papers—live papers dominate the total

distribution in this regime. The obvious way to fix this problem is via a small

modification of the ηk. In summary, the full model is able to fit the distributions

of both live and dead papers with remarkable accuracy.

One drawback, with regard to the full solution is the relatively impene-
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Figure 3: A log-log plot of the normalized degree distribution of all papers (live

plus dead). The points are the data; the fit (solid line) is derived from the fit to

the live papers (filled squares) in Figure 2.

trable expression for Lk in Equation (7)—associating any kind of intuition to

the conglomerate of gamma-functions presented there can be difficult. Let us

therefore demonstrate that Lk can be well approximated by a two power law

structure. We begin by noting that, in the limit of large k0 (as it is the case here),

the values of k1 and k2 are simply

k1 = −
1

a
+

b

ak0
− k0 (15)

k2 = −1 −
b

ak0
. (16)

Now, let us write out only the k-dependent terms in Equation (7) and assign

the remaining terms to a constant, C

Lk = C
(k + k0 − 1)!

(k − k1)!

(k + 1)!

(k − k2)!
(17)

≈ C
1

(k + k0 − 1)1−k0−k1

1

(k + 1)−(1+k2)
(18)

≈ C
1

(k + k0 − 1)
1+ 1

a −
b

ak0

1

(k + 1)
b

ak0

, (19)
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In Equation (18), we have utilized the fact that

(x + s)!

x!
≈ xs (20)

when x → ∞, and in Equation (19) we have inserted the asymptotic forms of

k1 and k2, from Equations (15) and (16).

This expression for Lk in Equation (19) is only valid for large k and k0, but it

proves to be remarkably accurate even for smaller values of k. With the asymp-

totic forms of k1 and k2 inserted, we can explicitly see that the first power law

is largely due to preferential attachment and that the second power law is ex-

clusively due to the death mechanism. The form for very large k is unaltered

by the parameter b. This is not surprising, since there is a low probability for

highly cited papers to die. We see that the primary role of the death mechanism

in the full model is to add a little extra structure to the Lk for small k.

7 Conclusions

Compelled by a significant inhomogeneity in the data, we have created a model

that provides an excellent description of the SPIRES database. It is obvious that

the death mechanism (b 6= 0) is essential for describing the live and dead pop-

ulations separately, but less clear that it is indispensable when it comes to the

total data. Fitting the total distribution with a preferential attachment only

model (b = 0) results in a = 0.528 and k0 = 13.22 and with a rms. fractional

error of 33.6%. This fit displays systematic deviations from the data, but con-

sidering that the fit ignores important correlations in the dataset, the overall

quality is rather high. The important lesson to learn from the work in this pa-

per, is that even a high quality fit to the global network distributions is not

necessarily an indication of the absence of additional correlations in the data.

The most significant difference between the full live-dead model and the

model described above is expressed in the value of the parameter k0. The

value of this parameter changes by a factor of approximately 5, from 65.6 to

13.2. It strikes us as natural that preferential attachment will not be important

until a paper is sufficiently visible for authors to cite it without reading it. We

thus believe that k0 ≈ 66 is a more intuitively appealing value for the onset of

preferential attachment. However, independent of which value of the k0 pa-

rameter one prefers, the comparison of these two models clearly demonstrates
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the danger of assigning physical meaning to even the most physically moti-

vated parameters if a network contains unidentified correlations or if known

correlations are neglected in the modeling process. Specifically, it would be ill

advised to draw strong conclusions about the onset of preferential attachment

if the death mechanism is not included in the model making.

In summary, the live and dead papers in the SPIRES database constitute

distributions with significantly different statistical properties. We have con-

structed a model which includes modified preferential attachment and the death

of nodes. This model is quantitatively successful in describing the citation dis-

tributions for live and dead papers. The resulting model has also been shown

to produce a two power law structure. This structure provides an appealing

link to the work in (Lehmann et al., 2003), where a two power law structure

was adopted to characterize the form of the SPIRES data without any theoret-

ical support. Finally, we have been shown that even in the absence of prefer-

ential attachment, the death mechanism alone can result in power laws. Since

many real world networks have a large number of inactive nodes and only a

small fraction of active nodes, we are confident that this mechanism will find

more general use.

Acknowledgements

Our grateful thanks to T. C. Brooks at SPIRES without whose thoughtful help

we would have lacked all of the data!

11



References

Albert, R. and A.-L. Barabási (2002), Statistical mechanics of complex networks.

Reviews of modern physics, 74, 47.

Barabási, A.-L. and R. Albert (1999), Emergence of scaling in random networks.

Science, 286, 509.

de Solla Price, D. (1965), Networks of Scientific Papers. Science, 149, 510–515.

de Solla Price, D. (1976), A General Theory of Bibliometric and Other Cumu-

lative Advantage Processes. Journal of the American Society for Information

Science, 27, 292.

Dorogovtsev, S. N. and J. F. F. Mendes (2002), Evolution of networks. Advances

in Physics, 51, 1079.

Klemm, K. and V. M. Eguíluz (2002), Highly Clustered Scale-Free Networks.

Physical Review E, 65, 036123.

Krapivsky, P. L., and S. Redner (2001), Organization of Growing Random Net-

works. Physical Review E, 63, 066123.

Krapivsky, P. L., S. Redner and F. Leyvraz (2000), Connectivity of Growing

Random Networks. Physical Review Letters, 85(21), 4629.

Lehmann, S., B. E. Lautrup and A. D. Jackson (2003), Citation networks in high

energy physics. Physical Review E, 68.

Lehmann, S., A. D. Jackson and B. E. Lautrup (2005), Life, Death, and Prefer-

ential Attachment. Europhysics Letters, 69, 298.

Newman, M. E. J. (2003), The structure and function of complex networks.

SIAM Review, 45, 167.

Redner, S. (1998). How popular is your paper? An emperical study of the

citation distribution. European Physics Journal B, 4, 131–4.

Redner, S. (2004), Citation Statistics From More Than a Century of Physical

Review. physics/0407137.

Simon, H. A. (1957), Models of Man. New York: Wiley.

Watts, D. J. (1999), Small Worlds. Princeton: Princeton University Press.

12

http://arxiv.org/abs/physics/0407137

	Introduction
	The SPIRES data
	The Model
	Rate Equations
	The k0  Limit
	The Full Model
	Conclusions
	References

