109 research outputs found

    Numerical modeling of semisolid flow under processing conditions

    Get PDF
    During the industrial process of Semisolid Forming (or Thixoforming) of alloy slurries, typically the operation of die filling takes around 0.1s. During this time period the alloy slug is transformed from a solid-like structure capable of maintaining its shape, into a liquid-like slurry able to fill a complex die cavity: this involves a decrease in viscosity of some 6 orders of magnitude. Many attempts to measure thixotropic breakdown experimentally in alloy slurries have relied on the use of concentric cylindrical viscometers in which viscosity changes have been followed after shear rate changes over times above 1s to in excess of 1000s, which have little relevance to actual processing conditions and therefore to modeling of flow in industrial practice. The present paper is an attempt to abstract thixotropic breakdown rates from rapid compression tests between parallel plates moving together at velocities of around 1m/s, similar to industrial conditions. From this analysis, a model of slurry flow has been developed in which rapid thixotropic breakdown of the slurry occurs at high shear rates

    Comment on the power law in rheological equations

    Get PDF
    In conformity with the principle of shear reversal, it is proposed that the power law index in the Cross equation relating steady state viscosity to shear rate in semisolid alloy slurries should have a value of 4/3, which is independent of alloy system and the fraction solid

    Sorafenib for the treatment of advanced hepatocellular cancer – a UK audit

    Get PDF
    Aims: Sorafenib is the current standard treatment for advanced hepatocellular carcinoma. We carried out a national audit of UK patients treated with sorafenib as standard-of-care and those treated with systemic therapy in first-line trials. Materials and methods: Sorafenib-treated and trial-treated patients were identified via the Cancer Drugs Fund and local databases. Data were collected retrospectively from medical records according to a standard case report form. The primary outcome measure was overall survival, estimated by the Kaplan–Meier method. Results: Data were obtained for 448 sorafenib-treated patients from 15 hospitals. The median age was 68 years (range 17–89) and 75% had performance status ≤ 1. At baseline, 77% were Child-Pugh A and 16.1% Child-Pugh B; 38% were albumin–bilirubin grade 1 (ALBI-1) and 48% ALBI-2; 23% were Barcelona Clinic Liver Classification B (BCLC-B) and 72% BCLC-C. The median time on sorafenib was 3.6 months, with a mean daily dose of 590 mg. The median overall survival for 448 evaluable sorafenib-treated patients was 8.5 months. There were significant differences in overall survival comparing Child-Pugh A versus Child-Pugh B (9.5 versus 4.6 months), ALBI-1 versus ALBI-2 (12.9 versus 5.9 months) and BCLC-B versus BCLC-C (13.0 versus 8.3 months). For trial-treated patients (n = 109), the median overall survival was 8.1 months and this was not significantly different from the sorafenib-treated patients. Conclusion: For Child-Pugh A patients with good performance status, survival outcomes were similar to those reported in global randomised controlled trials. Patients with ALBI grade > 1, Child-Pugh B or poor performance status seem to derive limited benefit from sorafenib treatment

    Estimation of cooling rates during close-coupled gas atomization using secondary dendrite arm spacing measurement

    Get PDF
    Al-4 wt pct Cu alloy has been gas atomized using a commercial close-coupled gas-atomization system. The resulting metal powders have been sieved into six size fractions, and the SDAS has been determined using electron microscopy. Cooling rates for the powders have been estimated using a range of published conversion factors for Al-Cu alloy, with reasonable agreement being found between sources. We find that cooling rates are very low relative to those often quoted for gas-atomized powders, of the order of 10 K s for sub-38 ÎĽm powders. We believe that a number of numerical studies of gas atomization have overestimated the cooling rate during solidification, probably as a consequence of overestimating the differential velocity between the gas and the particles. From the cooling rates measured in the current study, we estimate that such velocities are unlikely to exceed 20 m s

    Progress towards ignition on the National Ignition Facility

    Full text link

    Electron microscopy and structure of materials

    No full text
    • …
    corecore