49 research outputs found

    Can behavioral biases explain the rejections of the expectation hypothesis of the term structure of interest rates?

    Get PDF
    We test whether the rejections of the expectations hypothesis can be explained by two behavioral biases: the law of small numbers and conservatism. We use the term structure to decompose excess bond returns into components related to expectation errors and expectation revisions, enabling a direct test of behavioral models using the expectations of market participants. We find systematic patterns in expectation errors, and expectation revisions, which are consistent with these two biases. We show that a trading strategy that exploits these biases delivers significant economic profits and that our results are unlikely to be driven by a time-varying risk premium

    Current methods to analyze lysosome morphology, positioning, motility and function

    Get PDF
    Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.Medical Biochemistr

    Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction

    Get PDF
    The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease

    Business and environmental sustainability Key issues and best practice

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:m02/40203 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore