7 research outputs found

    An origin for small neutrino masses in the NMSSM

    Get PDF
    We consider the Next to Minimal Supersymmetric Standard Model (NMSSM) which provides a natural solution to the so-called mu problem by introducing a new gauge-singlet superfield S. We realize that a new mechanism of neutrino mass suppression, based on the R-parity violating bilinear terms mu_i L_i H_u mixing neutrinos and higgsinos, arises within the NMSSM, offering thus an original solution to the neutrino mass problem (connected to the solution for the mu problem). We generate realistic (Majorana) neutrino mass values without requiring any strong hierarchy amongst the fundamental parameters, in contrast with the alternative models. In particular, the ratio |mu_i/mu| can reach about 10^-1, unlike in the MSSM where it has to be much smaller than unity. We check that the obtained parameters also satisfy the collider constraints and internal consistencies of the NMSSM. The price to pay for this new cancellation-type mechanism of neutrino mass reduction is a certain fine tuning, which get significantly improved in some regions of parameter space. Besides, we discuss the feasibility of our scenario when the R-parity violating bilinear terms have a common origin with the mu term, namely when those are generated via a VEV of the S scalar component from the couplings lambda_i S L_i H_u. Finally, we make comments on some specific phenomenology of the NMSSM in the presence of R-parity violating bilinear terms.Comment: 21 pages, 5 figures, Latex fil

    Novel signatures for vector-like quarks

    Get PDF
    We consider supersymmetric extensions of the standard model with a vector-like doublet (T B) of quarks with charge 2/3 and −1/3, respectively. Compared to non-supersymmetric models, there is a variety of new decay modes for the vector-like quarks, involving the extra scalars present in supersymmetry. The importance of these new modes, yielding multi-top, multi-bottom and also multi-Higgs signals, is highlighted by the analysis of several benchmark scenarios. We show how the triangles commonly used to represent the branching ratios of the ‘standard’ decay modes of the vector-like quarks involving W, Z or Higgs bosons can be generalised to include additional channels. We give an example by recasting the limits of a recent heavy quark search for this more general case.The work of J.A. Aguilar-Saavedra has been supported by MINECO Projects FPA 2016- 78220-C3-1-P and FPA 2013-47836-C3-2-P (including ERDF), and by Junta de Andaluc a Project FQM-101. The work of D.E. L opez-Fogliani has been supported by the Argentinian CONICET. The work of C. Mu~noz has been supported in part by the Programme SEV- 2012-0249 `Centro de Excelencia Severo Ochoa'. D.E. L opez-Fogliani and C. Mu~noz also acknowledge the support of the Spanish grant FPA2015-65929-P (MINECO/FEDER, UE), and MINECO's Consolider-Ingenio 2010 Programme under grant MultiDark CSD2009- 00064

    Theoretical predictions for the direct detection of neutralino dark matter in the NMSSM

    Full text link
    We analyse the direct detection of neutralino dark matter in the framework of the Next-to-Minimal Supersymmetric Standard Model. After performing a detailed analysis of the parameter space, taking into account all the available constraints from LEPII, we compute the neutralino-nucleon cross section, and compare the results with the sensitivity of detectors. We find that sizable values for the detection cross section, within the reach of dark matter detectors, are attainable in this framework. For example, neutralino-proton cross sections compatible with the sensitivity of present experiments can be obtained due to the exchange of very light Higgses with m_{h_1^0}\lsim 70 GeV. Such Higgses have a significant singlet composition, thus escaping detection and being in agreement with accelerator data. The lightest neutralino in these cases exhibits a large singlino-Higgsino composition, and a mass in the range 50\lsim m_{\tilde\chi_1^0}\lsim 100 GeV.Comment: Final version to appear in JHEP. References added. LaTeX, 53 pages, 23 figure

    Collider aspects of flavour physics at high Q

    Get PDF
    This review presents flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavour aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. We also present public available computational tools related to this topic.Comment: Report of Working Group 1 of the CERN Workshop ``Flavour in the era of the LHC'', Geneva, Switzerland, November 2005 -- March 200

    Theoretical predictions for the direct detection of neutralino dark matter in the NMSSM

    No full text
    We analyse the direct detection of neutralino dark matter in the framework of the Next-to-Minimal Supersymmetric Standard Model. After performing a detailed analysis of the parameter space, taking into account all the available constraints from LEPII, we compute the neutralino-nucleon cross section, and compare the results with the sensitivity of detectors. We find that sizable values for the detection cross section, within the reach of dark matter detectors, are attainable in this framework. For example, neutralino-proton cross sections compatible with the sensitivity of present experiments can be obtained due to the exchange of very light Higgses with m_h__1_"0 <- 70 GeV. Such Higgses have a significant singlet composition, thus escaping detection and being in agreement with accelerator data. The lightest neutralino in these cases exhibits a large singlino-Higgsino composition, and a mass in the range 50 <-m_x__1_"0 <- 100 GeV. (orig.)SIGLEAvailable from TIB Hannover: RA 2999(04-129) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Collider aspects of flavor physics at high Q

    No full text
    corecore