166 research outputs found

    Approximate analysis of two-mass–spring systems and buckling of a column

    Get PDF
    AbstractMax–Min Approach (MMA) is applied to obtain an approximate solution of three practical cases in terms of a nonlinear oscillation system. After finding maximal and minimal solution thresholds of a nonlinear problem, an approximate solution of the nonlinear equation can be easily achieved using He Chengtian’s interpolation. Numerical results indicate the effectiveness of the proposed method both in respect of the whole range of involved parameters as well as the excellent agreement with the approximate frequencies and periodic solutions with the exact ones. It is predicted that MMA can be found widely applicable in engineering

    Ferrofluid convective heat transfer under the influence of external magnetic source

    Get PDF
    AbstractFerrofluid convective heat transfer in a cavity with sinusoidal cold wall is examined under the influence of external magnetic source. The working fluid is Fe3O4-water nanofluid. Single phase model is used to estimate the behavior of nanofluid. Vorticity stream function formulation is utilized to eliminate pressure gradient source terms. New numerical method is chosen namely Control volume base finite element method. Influences of Rayleigh, Hartmann numbers, amplitude of the sinusoidal wall and volume fraction of Fe3O4 on hydrothermal characteristics are presented. Results indicate that temperature gradient enhances as space between cold and hot walls reduces at low buoyancy force. Lorentz forces cause the nanofluid velocity to reduce and augment the thermal boundary layer thickness. Nusselt number augments with rise of buoyancy forces but it decreases with augment of Lorentz forces

    Application of He's variational iteration method to nonlinear Jaulent–Miodek equations and comparing it with ADM

    Get PDF
    AbstractInstead of finding a small parameter for solving nonlinear problems through perturbation method, a new analytical method called He's variational iteration method (VIM) is introduced to be applied to solve nonlinear Jaulent–Miodek, coupled KdV and coupled MKdV equations in this article. In this method, general Lagrange multipliers are introduced to construct correction functionals for the problems. The multipliers can be identified optimally via the variational theory. The results are compared with exact solutions

    Analytical investigation of the one dimensional heat transfer in logarithmic various surfaces

    Get PDF
    AbstractThe purpose of the present study was to investigate of the effect of temperature variation on the logarithmic surface. By using the appropriate similarity transformation for the generation components and temperature, the basic equations governing flow and heat transfer are reduced to a set of ordinary differential equations. These equations have been solved approximately subject to the relevant boundary conditions with numerical and analytical techniques. The reliability and performance of the present method have been compared with the numerical method (Runge–Kutta fourth-rate) to solve this problem. Then, LSM is used to solve nonlinear equation in heat transfer. This method is useful and practical for solving the nonlinear equation in heat transfer. It is observed that the obtained results by present analytical method are very close to result of the numerical method. Furthermore, the results show that the temperature profiles decreased by increasing the Ξ± number, and, temperature profiles increased by increasing the Ξ² number

    Preparation, Modeling, and Optimization of Mechanical Properties of Epoxy/H I PN/Silica Hybrid Nanocomposite Using Combination of Central Composite Design and Genetic Algorithm. Part 2. Studies on Flexural, Compression, and Impact Strength

    No full text
    In spite of good tensile strength of epoxy resins, they have brittle nature and show poor resistance to crack propagation. In view of enhancing mechanical strength and fracture toughness of epoxy-based nanocomposite simultaneously, a new combination of thermoplastic and particulate nanofiller is used as a modifier. Here, the obtained ternary epoxy-based nanocomposite includes high impact polystyrene (HIPS) as thermoplastic and silica nanoparticles as its particulate phases. Flexural, compression and impact were the three different mechanical tests investigated, in order to achieve higher strength without attenuating other desired mechanical properties. Central composite design (CCD) is employed to present mathematical models to predict mechanical behaviors of epoxy/HIPS/silica nanocomposite as a function of physical factors. The effective parameters investigated were HIPS, SiOβ‚‚ and hardener contents. Based on mathematical functions obtained from CCD model, the genetic algorithm – as one of the most powerful optimization tools – is applied to find the optimum values of mentioned mechanical properties. We have found that a combination of HIPS and silica nanoparticles significantly increase compressive and impact strengths of epoxy resin up to 57 and 421%, respectively. Although flexural strength did not change positively, the elongation at break for flexural one increased up to 144%. Finally, the morphology of fracture surface was studied by energy-dispersive X-ray spectroscopy and scanning electron microscopy.НСсмотря Π½Π° Ρ‚ΠΎ Ρ‡Ρ‚ΠΎ эпоксидныС смолы ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ высоким ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠΌ прочности ΠΏΡ€ΠΈ растяТСнии, ΠΎΠ½ΠΈ Ρ…Ρ€ΡƒΠΏΠΊΠΈΠ΅ ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ слабым сопротивлСниСм Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½Ρ‹. Π‘ Ρ†Π΅Π»ΡŒΡŽ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ мСханичСской прочности ΠΈ вязкости Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ эпоксидных Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² Π² качСствС ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π° использовали Π½ΠΎΠ²Ρ‹ΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ тСрмопластичный диспСрсный Π½Π°Π½ΠΎΠ½Π°ΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹ΠΉ эпоксидный Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ содСрТит ΡƒΠ΄Π°Ρ€ΠΎΠΏΡ€ΠΎΡ‡Π½Ρ‹ΠΉ полистирол Π² Π²ΠΈΠ΄Π΅ тСрмопластичных ΠΈ ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ½Ρ‹Ρ… наночастиц, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Π΅Π³ΠΎ диспСрсныС Ρ„Π°Π·Ρ‹. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ высокиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ прочности Π±Π΅Π· воздСйствия Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ мСханичСскиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ, ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ испытания Π½Π° ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ ΠΈΠ·Π³ΠΈΠ±Π΅ ΠΈ сТатии ΠΈ Π½Π° ΡƒΠ΄Π°Ρ€Π½ΡƒΡŽ Π²ΡΠ·ΠΊΠΎΡΡ‚ΡŒ. Для прСдставлСния матСматичСских ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ с Ρ†Π΅Π»ΡŒΡŽ прогнозирования мСханичСского повСдСния Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠ³ΠΎ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π° Π² качСствС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ физичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² использовали Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΏΠ»Π°Π½. ИсслСдовали содСрТаниС ΡƒΠ΄Π°Ρ€ΠΎΠΏΡ€ΠΎΡ‡Π½ΠΎΠ³ΠΎ полистирола, ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ° ΠΈ ΡƒΠΏΡ€ΠΎΡ‡Π½ΡΡŽΡ‰Π΅Π³ΠΎ элСмСнта Π² Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π΅. На основС матСматичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ»Π°Π½Π°, для вывСдСния ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ мСханичСских свойств использовали гСнСтичСский Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ, ΡΠ²Π»ΡΡŽΡ‰ΠΈΠΉΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· самых ΠΌΠΎΡ‰Π½Ρ‹Ρ… срСдств ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ. УстановлСно, Ρ‡Ρ‚ΠΎ сочСтаниС наночастиц Π½Π° основС ΡƒΠ΄Π°Ρ€ΠΎΠΏΡ€ΠΎΡ‡Π½ΠΎΠ³ΠΎ полистирола ΠΈ ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ° Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ сопротивлСниС эпоксидной смолы ΡΠΆΠ°Ρ‚ΠΈΡŽ ΠΈ ΡƒΠ΄Π°Ρ€Ρƒ Π½Π° 57 ΠΈ 421% соотвСтствСнно. ΠŸΡ€ΠΈ сопротивлСнии ΠΈΠ·Π³ΠΈΠ±Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π½Π΅ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ, ΡƒΠ΄Π»ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ ΠΈΠ·Π³ΠΈΠ±Π½ΠΎΠΌ Ρ€Π°Π·Ρ€Ρ‹Π²Π΅ увСличиваСтся Π΄ΠΎ 144%. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ энСргодиспСрсионного рСнтгСновского излучСния ΠΈ ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ элСктронной микроскопии ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ исслСдованиС ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ повСрхности Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ.ΠΠ΅Π·Π²Π°ΠΆΠ°ΡŽΡ‡ΠΈ Π½Π° Ρ‚Π΅ Ρ‰ΠΎ Споксидні смоли ΠΌΠ°ΡŽΡ‚ΡŒ Ρ…ΠΎΡ€ΠΎΡˆΡƒ Π³Ρ€Π°Π½ΠΈΡ†ΡŽ міцності ΠΏΡ€ΠΈ розтязі, Π²ΠΎΠ½ΠΈ ΠΊΡ€ΠΈΡ…ΠΊΡ– Ρ– Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡŒΡΡ слабким ΠΎΠΏΠΎΡ€ΠΎΠΌ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ Ρ‚Ρ€Ρ–Ρ‰ΠΈΠ½ΠΈ. Π†Π· ΠΌΠ΅Ρ‚ΠΎΡŽ покращання ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΎΡ— міцності Ρ– в’язкості руйнування Споксидних Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ–Π² як ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠ°Ρ‚ΠΎΡ€ використовували Π½ΠΎΠ²ΠΈΠΉ ΠΊΠΎΠΌΠ±Ρ–Π½ΠΎΠ²Π°Π½ΠΈΠΉ тСрмопластичний диспСрсний Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡. Π”ΠΎ складу ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎΠ³ΠΎ Ρ‚Ρ€ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Споксидного Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π° Π²Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΡƒΠ΄Π°Ρ€ΠΎΠΌΡ–Ρ†Π½ΠΈΠΉ полістирол Ρƒ вигляді тСрмопластичних Ρ– ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ½ΠΈΡ… наночастинок, Ρ‰ΠΎ ΡΠ²Π»ΡΡŽΡ‚ΡŒ собою ΠΉΠΎΠ³ΠΎ диспСрсні Ρ„Π°Π·ΠΈ. Π©ΠΎΠ± ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ Π±Ρ–Π»ΡŒΡˆ високі ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ міцності Π±Π΅Π· Π²ΠΏΠ»ΠΈΠ²Ρƒ Π½Π° Ρ–Π½ΡˆΡ– Π·Π°Π΄Π°Π½Ρ– ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½Ρ– ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ, ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ випробування Π½Π° ΠΌΡ–Ρ†Π½Ρ–ΡΡ‚ΡŒ ΠΏΡ€ΠΈ Π·Π³ΠΈΠ½Ρ– Ρ– стиску Ρ‚Π° Π½Π° ΡƒΠ΄Π°Ρ€Π½Ρƒ Π²β€™ΡΠ·ΠΊΡ–ΡΡ‚ΡŒ. Для прСдставлСння ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π· ΠΌΠ΅Ρ‚ΠΎΡŽ прогнозування ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΎΡ— ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΠΈ Π³Ρ–Π±Ρ€ΠΈΠ΄Π½ΠΎΠ³ΠΎ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π° як Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΡŽ Ρ„Ρ–Π·ΠΈΡ‡Π½ΠΈΡ… Ρ‡ΠΈΠ½Π½ΠΈΠΊΡ–Π² використали Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΈΠΉ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†Ρ–ΠΉΠ½ΠΈΠΉ ΠΏΠ»Π°Π½. ДослідТували вміст ΡƒΠ΄Π°Ρ€ΠΎΠΌΡ–Ρ†Π½ΠΎΠ³ΠΎ полістиролу, ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΡƒ Ρ– Π·ΠΌΡ–Ρ†Π½ΡŽΠ²Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π° Π² Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ–. На основі ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΉ, ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… Π·Π° модСллю Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†Ρ–ΠΉΠ½ΠΎΠ³ΠΎ ΠΏΠ»Π°Π½Ρƒ, для вивСдСння ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΡŒ ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΈΡ… властивостСй використовували Π³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΈΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ, Ρ‰ΠΎ Ρ” ΠΎΠ΄Π½ΠΈΠΌ Ρ–Π· Π½Π°ΠΉΠΌΡ–Ρ†Π½Ρ–ΡˆΠΈΡ… засобів ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ—. УстановлСно, Ρ‰ΠΎ поєднання наночастинок Π½Π° основі ΡƒΠ΄Π°Ρ€ΠΎΠΌΡ–Ρ†Π½ΠΎΠ³ΠΎ полістиролу Ρ– ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΡƒ Π·Π±Ρ–Π»ΡŒΡˆΡƒΡ” ΠΎΠΏΡ–Ρ€ Споксидної смоли стиску Π½Π° 57%, ΡƒΠ΄Π°Ρ€Ρƒ – Π½Π° 421%. Π£ Ρ‚ΠΎΠΉ ΠΆΠ΅ час ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΡ… Π·ΠΌΡ–Π½ ΠΏΡ€ΠΈ ΠΎΠΏΠΎΡ€Ρ– Π·Π³ΠΈΠ½Ρƒ Π½Π΅ Π²Ρ–Π΄ΠΌΡ–Ρ‡Π°Ρ”Ρ‚ΡŒΡΡ, видовТСння Π·Π° згинального Ρ€ΠΎΠ·Ρ€ΠΈΠ²Ρƒ Π·Π±Ρ–Π»ΡŒΡˆΡƒΡ”Ρ‚ΡŒΡΡ Π΄ΠΎ 144%. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ дослідТСння ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³Ρ–Ρ— ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– руйнування Π·Π° допомогою СнСргодиспСрсійного Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½Ρ Ρ– ΡΠΊΠ°Π½ΡƒΠ²Π°Π»ΡŒΠ½ΠΎΡ— Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΡ— мікроскопії

    Numerical simulation of hydrothermal features of Cu-H2O nanofluid natural convection within a porous annulus considering diverse configurations of heater

    Get PDF
    The purpose of the current study is to numerically investigate the effects of shape factors of nanoparticles on natural convection in a fluid-saturated porous annulus developed between the elliptical cylinder and square enclosure. A numerical method called the control volume-based finite element method is implemented for solving the governing equations. The modified flow and thermal structures and corresponding heat transfer features are investigated. Numerical outcomes reveal very good grid independency and excellent agreement with the existing studies. The obtained results convey that at a certain aspect ratio, an increment in Rayleigh and Darcy numbers significantly augments the heat transfer and average Nusselt number. Further, enhancement of Rayleigh number increases the velocity of nanofluid, while that of aspect ratio of the elliptical cylinder shows the opposite trend

    Ferrofluid convective heat transfer under the influence of external magnetic source

    No full text
    Ferrofluid convective heat transfer in a cavity with sinusoidal cold wall is examined under the influence of external magnetic source. The working fluid is Fe3O4-water nanofluid. Single phase model is used to estimate the behavior of nanofluid. Vorticity stream function formulation is utilized to eliminate pressure gradient source terms. New numerical method is chosen namely Control volume base finite element method. Influences of Rayleigh, Hartmann numbers, amplitude of the sinusoidal wall and volume fraction of Fe3O4 on hydrothermal characteristics are presented. Results indicate that temperature gradient enhances as space between cold and hot walls reduces at low buoyancy force. Lorentz forces cause the nanofluid velocity to reduce and augment the thermal boundary layer thickness. Nusselt number augments with rise of buoyancy forces but it decreases with augment of Lorentz forces. Keywords: Nanofluid, Natural convection, Magnetic source, CVFEM, Sinusoidal wal
    • …
    corecore