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Abstract The purpose of the present study was to investigate of the effect of temperature variation

on the logarithmic surface. By using the appropriate similarity transformation for the generation

components and temperature, the basic equations governing flow and heat transfer are reduced

to a set of ordinary differential equations. These equations have been solved approximately subject

to the relevant boundary conditions with numerical and analytical techniques. The reliability and

performance of the present method have been compared with the numerical method (Runge–Kutta

fourth-rate) to solve this problem. Then, LSM is used to solve nonlinear equation in heat transfer.

This method is useful and practical for solving the nonlinear equation in heat transfer. It is observed

that the obtained results by present analytical method are very close to result of the numerical

method. Furthermore, the results show that the temperature profiles decreased by increasing the

a number, and, temperature profiles increased by increasing the b number.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the heart of all the different engineering sciences, everything

explains itself in some kinds of mathematical relations and
most of these problems and phenomena are modeled by linear
and nonlinear equations. Therefore, many different methods

have been recently introduced to solve these equations. Analyt-
ical methods have made a comeback in research methodology
after taking a backseat to the numerical techniques for the lat-

ter half of the preceding century.
Most scientific problems and phenomena such as heat

transfer occur nonlinearly. Except a limited number of these
problems, it is difficult to find the exact analytical solutions

for them. Therefore, approximate analytical solutions are
searched and were introduced, among which Adomian
Decomposition Method (ADM) [1–3], Variational Iteration

Method (VIM) [4–7], and Homotopy Perturbation Method
(HPM) [8] are the most effective and convenient ones for both
weakly and strongly nonlinear equations. Perturbation method

[9] provides the most versatile tools available in nonlinear anal-
ysis of engineering problem, but its limitations restrict its
application [10,11]. Perturbation method [12] is based on
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assuming a small parameter. The majority of nonlinear prob-
lems, especially those having strong nonlinearity, have no
small parameters at all. Hajmohammadi and Nourazar have

studied the solution of characteristic value problems arising
in linear stability analysis. The results indicate that the present
algorithm based on DTM could be used as a promising

method for solving characteristic value problems [13]. There
are some simple and accurate approximation techniques for
solving nonlinear differential equations called the Weighted

Residuals Methods (WRMs). Collocation, Galerkin and Least
Square Method (LSM) are examples of the WRMs which are
introduced by Ozisik [14] for using in heat transfer problem.
Stern and Rasmussen [15] used collocation method for solving

a third order linear differential equation. Vaferi et al. [16] have
studied the feasibility of applying Orthogonal Collocation
method to solve diffusivity equation in the radial transient flow

system. Recently Hatami et al. [17] used LSM for heat transfer
study through porous fins and also the problem of laminar
nanofluid flow in a semi-porous channel in the presence of

transverse magnetic field is investigated. Hatami and Ganji
[18] found that LSM is more appropriate than other analytical
methods for solving the nonlinear heat transfer equations.

Recently several authors investigated about this subject and
heat transfer [19–25].

In this paper, the least square method, as simple, accurate
and computationally efficient analytical tools, is used to solve

the nonlinear heat transfer equation. The accuracy of this
method is demonstrated by comparing its results with this gen-
erated by numerical method.

2. Applications

2.1. Heat transfer problem description with various logarithmic

surfaces

The one-dimensional heat transfer in a logarithmic various
surface A(x) and logarithmic various heat generation G(x)
was studied (Fig. 1). It is also assumed that the conduction

coefficient, k, can be variable as a function of temperature.
The energy equation and the boundary conditions for this

geometry are as follows:
Figure 1 Geometry of the problem.
d

dx
kðTÞ � AðxÞ � dT

dx

� �
þ GðxÞ ¼ 0; ð1Þ

x ¼ 0 ! T ¼ T0f ; x ¼ L ! T ¼ TL: ð2Þ
where

AðxÞ ¼ A0e
ax;f GðxÞ ¼ G0e

�ax: ð3Þ
Assuming k as a linear function of temperature, we have

kðTÞ ¼ k0ð1þ bTÞ: ð4Þ
Here, b shows the rate of effectiveness of temperature varia-

tion on thermal conductivity coefficient and k0 is the thermal
conductivity of the fin at the ambient.

After simplification, we have

a
d

dx
hðxÞ

� �
þ a � b � T0 � hðxÞ � d

dx
hðxÞ

� �
þ b � T0

d

dx
hðxÞ

� �2

þ @2

@x2
hðxÞ

� �
þ b � T0 � hðxÞ @2

@x2
hðxÞ

� �
þ c � e�ax ¼ 0: ð5Þ

where

h ¼ T

T0

; c ¼ G

k0 � A0 � b � T0

: ð6Þ

With making the boundary conditions dimensionless we
have

x ¼ 0 ! h ¼ 1; x ¼ L ! h ¼ TL

T0

¼ z: ð7Þ

And a, z, and L are constants to be determined through the ini-

tial conditions.

3. Describe least square method and applied to the problem

3.1. Describe least square method

As Fakour et al. [26] defined, least square method is one of the
weighted residual methods which are constructed on minimiz-
ing the residuals of the trial function introduced to the nonlin-
ear differential equation. For perception of the principle of

LSM, consider a differential operator D is acted on a function
u to produce a function p:

D uðxÞð Þ ¼ pðxÞ: ð8Þ
It is considered that u is estimated by a function, ~u which is

a linear combination of fundamental functions chosen from a
linearly independent set. This is,

u ffi ~u ¼
Xn

i¼1

ciui: ð9Þ

by substituting Eq. (9) into the differential operator, D, the
result of the operations generally is not p(x) and a difference
will be appeared. Hence an error or residual will exist as

follows:

RðxÞ ¼ Dð~uðxÞÞ � pðxÞ– 0: ð10Þ
The main concept of LSM is to force the residual to zero in

some average sense over the domain. So,Z
x

RðxÞWiðxÞ ¼ 0 i ¼ 1; 2; . . . ; n: ð11Þ



Table 1 Comparison between the numerical results and LSM

solution for h(x) when b = 0, a= 2, T0 = 10, c= 2, z= 0.1,

L = 1.

x LSM NUM

0.0 1.00000000000000 1.00000000000000

0.1 0.86482427174124 0.86482427193265

0.2 0.73931067033517 0.73931067054619

0.3 0.62439798224122 0.62439798377139

0.4 0.52036716645904 0.52036716651016

0.5 0.42704898501483 0.42704898401945

0.6 0.34397799491287 0.34397799521372

0.7 0.27050549573856 0.27050549714003

0.8 0.20588125772145 0.20588125814171

0.9 0.14931164297411 0.14931164310081

1.0 0.10000000000000 0.10000000000000
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where the number of weight functions Wi, is accurately equal

the number of unknown coefficients ci in ~u. The result is a
set of n algebraic equations for the undefined coefficients ci.
If the continuous summation of all the squared residuals is

minimized, the rationale behind the LSM’s name can be seen,
in other words, a minimum of

S ¼
Z
x

RðxÞRðxÞdx ¼
Z
x

R2ðxÞdx: ð12Þ

In order to achieve a minimum of this function Eq. (12), the
derivatives of S with respect to all the each unknown parame-
ter should be zero, i.e.

@S

@ci
¼ 2

Z
x

RðxÞ @R
@ci

dx ¼ 0: ð13Þ

Comparing with Eq. (13), the weighted functions for LSM
will be,

Wi ¼ 2
@R

@ci
: ð14Þ

Because the ‘‘2” coefficient can be eliminated, it can be neg-
ligible in the equation. So the weighted functions, Wi, for the
least square method are the derivatives of the residuals with

respect to the unknown constants

Wi ¼ @R

@ci
: ð15Þ
3.2. The LSM applied to the problem

It should be noted that the trial solution must satisfy the
boundary conditions [14], so the trial solution can be written as

hðxÞ ¼ e�aL � z

�1þ e�aL
þ ðz� 1Þe�ax

�1þ e�aL
þ C1ðx� x2Þ þ C2ðx� x3Þ

þ C3ðx� x4Þ: ð16Þ
Figure 2 Comparison between results obtained via numerical

solution and LSM at b = 0, a= 4, T0 = 10, c= 2, z= 0.1,

L = 1.
By introducing this equation into Eq. (4) residual function
will be found and by substituting the residual function into Eq.
(16) a set of equations with seven equations and seven

unknown coefficients will be appeared and by solving this sys-
tem of equations, coefficients C1–C3 will be determined. By
using LSM, when a= 4, T0 = 10, c = 2, z= 0.1, L= 1

and b= 0 following equations will be determined for temper-
ature distribution on logarithmic surface.

hðxÞ ¼ �3:96499þ 4:96499eð�0:2xÞ � 0:4251181388x2

þ 0:3097707xþ 0:2755875x3 � 0:1602401x4: ð17Þ
4. Results and discussion

The objective of the present study was to apply least square
method to obtain an explicit analytical solution for heat trans-
fer equation of logarithmic surface profiles (Fig 1).

For showing the efficiency of applied analytical method a
special case is considered and results are compared with
numerical method as shown in Fig 2.
Figure 3 Effect of a on h when b = 0, T0 = 10, c= 2, z= 0.1,

L = 1.



Figure 4 Effect of a on h when b = 0, T0 = 10, c = 2, z= 0.1,

L = 1.

Figure 5 Effect of b on h when a= 4, T0 = 10, c = 2, z= 0.1,

L = 1.

Figure 6 Effect of b on h when a= 4, T0 = 10, c = 2, z = 0.1,

L = 1.

116 A. Vahabzadeh et al.
The numerical solution is performed using the algebra

package Maple 18.0. The package uses a fourth order
Runge–Kutta procedure to solve nonlinear boundary value
(B–V) problem. The validity of LSM is shown in Table 1.

The graphical representation of obtained data shows that the
results are precise and accurate in solving a wide range of
mathematical and engineering problems especially fluid

mechanic cases. This accuracy gives high confidence to us
about validity of this problem and reveals an excellent agree-
ment of engineering accuracy.

Moreover, Figs 3–6 present the effects of a and b on the

temperature profile. Figs 3 and 4 show the effect of a on tem-
perature profile. As seen in these figures by increasing a, tem-
perature profiles decreased for the values of a in the range of

0 < a < 1, also by increasing a number, temperature profiles
decreased for the values of a beyond 1.0. In addition, the
dimensionless temperature distributions along the fin surface
are depicted in Figs. 5 and 6, respectively. In the case of
b> 0, the temperature distribution increases as x increases.
For the case of b < 0, which is illustrated in Fig. 6, the temper-

ature increases as x increases.

5. Conclusion

In this paper, the basic idea of the least square method is intro-
duced and this method has been successfully applied to the
governing differential equations of a selected geometry with

a logarithmic various surface. The obtained results here were
compared with the exact solutions. The results show that these
methods enable to convert a difficult problem into a simple

problem which can be solved easily. The important objective
of our research is the examination of the convergence of
LSM. The comparisons of the obtained results here provide

more realistic solutions, reinforcing the conclusions about
the efficiency of these methods. Therefore the LSM is powerful
mathematical tools and can be applied to a large class of linear
and nonlinear equations arising in heat transfer problems.

Also by increasing a number, temperature profiles decreased
and by increasing b number, temperature profiles increased.
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