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a b s t r a c t

Max–Min Approach (MMA) is applied to obtain an approximate solution of three practical
cases in terms of a nonlinear oscillation system. After finding maximal and minimal
solution thresholds of a nonlinear problem, an approximate solution of the nonlinear
equation can be easily achieved using He Chengtian’s interpolation. Numerical results
indicate the effectiveness of the proposed method both in respect of the whole range of
involved parameters as well as the excellent agreement with the approximate frequencies
and periodic solutions with the exact ones. It is predicted that MMA can be found widely
applicable in engineering.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The study of nonlinear oscillators involves today a variety of research fields, such as vibrations, multi-body systems,
structural dynamics and transportation [1–25]. An improved He’s Energy Balance method for solving nonlinear oscillatory
differential equation using a new trial function was presented by Sfahani et al. [18]. The problem considered represents the
governing equations of the nonlinear, large amplitude free vibrations of a slender cantilever beamwith a rotationally flexible
root and carrying a lumped mass at an intermediate position along its span [18]. Ganji et al., [21] analyzed the Jamming
Transition Problem (JTP) via Lorentz system. Authors modeled jamming transition in traffic flow as a nonlinear damped
oscillator. Differential Transformation Method (DTM) was utilized for solving the nonlinear problem and the obtained
analytical results were compared with those obtained by the fourth-order Runge–Kutta Method (RK4) as a numerical
method [21].

Ibsen et al., [22] developed a new method called Max–Min method for deriving an accurate approximate analytical
solution to Duffing oscillators. They compared the obtained results with the Homotopy Analysis Method (HAM), Energy
Balance and numerical solution. The studies conducted before, show the significant importance of nonlinear oscillation
systems in deep understanding of the motions of nonlinear single (SDOF) and two degrees of freedom (TDOF) oscillation
systems. Single degree of freedom system representing a column is a system whose motion is defined just by a single
independent co-ordinate or function in terms of time. Additionally, some dynamic systems that require two impendent co-
ordinates, to describe the motion are considered as two degrees of freedom systems (TDOF). The TDOF oscillation systems
are mainly modeled with two coupled non-homogeneous ordinary differential equations.

Jefferys [26] reported the results of an investigation of the dynamical systems with two degrees of freedom, with
particular emphasis on cases where genuine differences from the integrable cases are apparent due to phenomena such
as small divisors.
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Fig. 1. Model for the bulking of a column [34].

Megahed and Abd El-Razik [27] presented the dynamic modeling and simulation of a proposed modified design of
variable inertia vibration absorbers for the vibration control of single degree of freedom systems. They used Lagrange
formulation to obtain its dynamic model in an analytical form.

Periodic motion of single and two degrees of freedom systems has been analyzed through many works. The existence of
an infinite number of periodic motions of arbitrarily long periods is established for spring–mass systems [28]. The concept
was to reduce the associated Hamiltonian to a normal form under the assumption which a certain determinant is non-zero.
A two degrees of freedom vibratory system with a clearance and repeated impacts is considered by Luo et al. [29]. Perfectly
plastic impact case is utilized in their work to study the dynamics of the system. Additionally, dynamics of the plastic impact
oscillator describing free flight and sticking solutions of two masses of the system, supplemented by transition conditions
at the instants of impacts are analyzed by Luo et al. [30].

Many researchers have addressed the nonlinear vibration of two-mass–spring systems with linear and nonlinear
stiffness, both analytically and numerically. Kachapi et al., [31] developed an analytical approach based on introducing the
transformation of two nonlinear differential equations for a two-mass system using proper intermediate variables into a
single one and then the displacement of the systemwas obtained directly from the linear second-order differential equation
using a first-order variational approach.

The presented work by Abrarova [32] is devoted to the existence, stability and bifurcation of the steady motion for a
system composed of two bodies connected by an elastic torsional spring. The forward rectilinear motion of two rigid bodies
along a horizontal plane is given by Chernousko [33] as well. Chernousko [33] constructed a periodic motion in which the
system moves along a straight line in his research.

2. The models of nonlinear oscillation systems

In this section, a practical case of nonlinear oscillation system of SDOF and two cases of TDOF systems are analyzed.

2.1. Case 1: model of a bulking column

In this section, we consider a column as shown in Fig. 1. The mass m moves in the horizontal direction only. Using this
model representing a column,wedemonstrate howone can study its static stability by determining the nature of the singular
point at u = 0 of the dynamic equations.

Neglecting the weight of springs and columns, shows that the governing equation for the motion ofm is [34]:

mü +


k1 −

2P
l


u +


k3 −

2P
l3


u3

+ · · · = 0, (1)

where u(0) = A, u̇(0) = 0. The spring force is given by:

Fspring = k1u + k3u3
+ · · · . (2)

Case 2. Two-mass system with three springs.
Two-mass system with three springs is modeled in Fig. 2. In this figure, two equal masses m are linked with the fixed

supports using spring k1. The connection between two masses makes a compact item which is a spring with nonlinear
properties. The linear coefficient of spring elasticity is k2 and the cubic nonlinearity is k3, thus, the system shows two degrees
of freedom. The generalized co-ordinates are x and y.

The mathematical model of the system is presented herein [11]:

v̈ +

[
k1 + 2 k2

m

]
v +

[
2 k3
m

]
v3

= 0, v(0) = y(0) − x(0) = Y0 − X0 = A, v̇(0) = 0. (3)
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Fig. 2. The two-mass system with three springs [11].

Fig. 3. The two-mass system with spring [9].

Note that the case of k3 > 0 corresponds to a hardening spring while k3 < 0 indicates a softening one.
Case 3. Two-mass system with a connection spring.

Similarly, the system with one spring is modeled through Fig. 3. Two masses,m1 andm2, are linked with a spring which
linear coefficient of rigidity is k1 while the nonlinear one is k3. The system has two degrees of freedom.

The generalized co-ordinates of the system are x and y. The motion of the system is described by [9]:

v̈ +

[
k1 (m1 + m2)

m1m2

]
v +

[
k2 (m1 + m2)

m1m2

]
v3

= 0,

v(0) = y(0) − x(0) = Y0 − X0 = A, v̇(0) = 0.
(4)

As mentioned above, these models can be transformed to a cubic nonlinear differential equation in general form with
different values α and β . The general form of cubic nonlinear differential is described as follows:

v̈ + α v + β v3
= 0, v(0) = A, v̇(0) = 0. (5)

3. Basic idea of Max–Min approach

Let us consider the general nonlinear oscillators as follows:

ü + N(u, u̇, ü, t) = 0, u(0) = A, ü(0) = 0 (6)

where N(u, u̇, ü, t) is a function with nonlinear term. Due to the fact that MMA requires neither a small parameter nor a
linear term in a differential equation, Eq. (6) can be approximately solved using MMA. The basic concept of this method is
come from an ancient history book written by He Chengtian [35]. He actually uses the following inequality:

If
a
b

< x <
d
c

(7)

where a, b, c and d are real numbers, then

a
b

<
ma + nd
mb + nc

<
d
c
. (8)

And x is approximated by

x =
ma + nd
mb + nc

(9)

wherem and n are weighting factors. Briefly, we can rewrite Eq. (6) in the following form:

ü + ζ (u, u̇, ü, t).u = 0 (10)

where ζ (u, u̇, ü, t) is N(u, u̇, ü, t)/u. We can identify the frequency value as the following form:

a
b

< ω2
=

ma + nd
mb + nc

<
d
c

(11)

where a, b, c , d are real numbers andm, n are weighting factors. So, we have

ü + ω2.u = ü + N(u, u̇, ü, t) + Ω(u, u̇, ü, t). (12)
And

Ω(u, u̇, ü, t) = 0. (13)
Substituting A cosωt as initial assumption into Eq. (13), ω can be obtained.
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4. Analysis of mechanical models applying MMA

In this section, the proposed method, MMA, is applied in order to solve and analyze three nonlinear cases presented in
the Section 2. For this reason, the Cubic nonlinear equation (5) is considered as the following steps. Initially, Eq. (5) can be
rewritten:

v̈ + (α + βv2).v = 0. (14)

If we choose the trial-function in the form v(t) = A. cos(ω t), where ω is the frequency. By using the trial-function, the
maximal and minimal values of α + β v2 are α + β A2 and A, respectively. So we can obtain:

α

1
≺ ω2

= α + βv2
≺

α + βA2

1
. (15)

According to He Chengtian’s interpolation, we set

ω2
=

m.α + n.(α + βA2)

m + n
= α + k.β.A2 (16)

where m and n are weighting factors, k = n/n + m. So the frequency can be approximated as:

ω =


α + k.β.A2. (17)

Then Eq. (14), can be rewritten in the following form:

v̈ + v.(α − k.β.A2) = v̈ + α.v + β.v3
+ Ω

Ω = k.v.β.A2
− β.v3.

(18)

Substituting the trial function into Ω , and using Fourier expansion series, it is obvious that:

A3β. cos(ωt)[k − cos2(ωt)] =

∞−
n=0

b2n+1 cos[(2n + 1)ωt]

= b1 cos(ωt) +

∞−
n=1

b2n+1 cos[(2n + 1)ωt]

≈ b1 cos(ωt). (19)

For avoiding secular term we set b1 = 0:

b1 =
4A3β.

π

∫ π/2

0
[(k − cos2 ϕ) cos2 ϕdϕ] =

A3β(4k − 3)
4

= 0. (20)

From Eq. (20), the value of k is:

k =
3
4

(21)

Substituting Eq. (21) into Eq. (17), yields:

ωMMA =


α +

3 A2 β

4
. (22)

Consequently, we obtain the following period:

TMMA =
2π

ωMMA
. (23)

5. Results and discussions

The analytical results in terms of frequency values as well as outcomes associated with period of Eq. (5) are considered
for different values of α and β . Subtitling α = (k1 + 2P/l)/m and β = (k3 + 2P/l3)/m in Eqs. (22) and (23) yields the
following results for bucking of a column as a nonlinear SDOF system presented in Section 2:

ω 1 =
1
2


4k1l3 − 8Pl2 + 3k3A2l3 − 6PA2

m l3
, (24)

T1 =
4π

√
m l3

4k1l3 − 8Pl2 + 3k3A2l3 − 6PA2
. (25)
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Table 1
Comparison of approximate and exact periods for case 1.

Constant parameters Approximate solutions Exact solution Error percentage
m l p k1 k3 A TMMA Te |T − Tex|/Tex (%)

1 1 1 10 5 1 1.96254 1.96451 0.101
5 1.5 5 5 6 3 3.23743 3.32368 2.664

10 10 10 10 50 10 0.32418 0.33143 2.210
50 25 40 30 100 20 0.25640 0.26208 2.216
70 20 −30 50 100 10 0.60486 0.61809 2.187

100 50 150 70 20 100 0.16221 0.16580 2.218
500 150 220 120 500 0.5 9.67637 9.71672 0.417

1000 500 1000 500 500 1 6.73241 6.75871 0.391

Table 2
Comparison of approximate and ‘‘Exact’’ frequencies for case 2.

Constant parameters Approximate solutions Exact solution Error percentage
m k1 k2 k3 X0 Y0 ωMMA ωex |ω−ωex|/ωex (%)

1 1 1 1 5 1 5.1962 5.1078 1.73
2 1 3 5 8 10 4.3012 4.2406 1.43
5 10 20 30 −10 10 60.08328 58.7856 2.21

10 50 70 90 20 −40 220.4972 215.7113 2.22
10 25 20 0.5 −10 10 6.0415 5.9541 1.47
100 200 300 400 −50 50 244.9653 239.6455 2.22

Table 3
Comparison of approximate and ‘‘Exact’’ frequencies for case 3.

Constant Parameters Approximate solutions Exact solution |ω−ωex|/ωex (%)
m1 m2 k1 k2 X0 Y0 ωMMA ωex

1 2 5 1 −4 1 5.9687 5.8892 1.35
3 5 2 5 5 −5 14.1798 13.8752 2.20
1 5 5 1 5 −5 9.7980 9.6119 1.94

10 5 10 10 20 30 15.0997 14.7806 2.16
5 10 50 −0.01 −20 40 2.6268 2.5468 3.14

100 1 10 5 20 25 10.2366 10.0564 1.79
50 100 50 100 100 25 112.5067 110.0633 2.22

1000 100 200 300 400 200 314.6461 307.8115 2.17

Moreover, by substituting α = (k1 + 2 k2)/m and β = 2 k3/m into Eqs. (24) and (25), we can obtain the approximate
solution of the second case in Eqs. (26) and (27)

ω1 =


k1 + 2k2 + 1.5k3A2

m
, (26)

T1 =
π

√
8m

2 k1 + 4 k2 + 3A2 k3
. (27)

Similarly, by choosing the α = k1(m1 + m2)/m1m2 and β = k2(m1 + m2)/m1m2, the following frequency and period
values are obtained for case 3:

ω1 =


(m1 + m2)

m1m2


k1 +

3
4
A2k2


, (28)

T1 =
2π

√
m1m2

(m1 + m2)

k1 +

3
4A

2k2
 . (29)

To illustrate and verify accuracy of MMA, comparisons with the exact solutions are given in Tables 1–3. The exact
frequency of nonlinear differential equation in the cubic form is [36]:

ωex(A) =
π


α + β A2

2

∫ π/2

0

dt
1 − δ sin2 t

−1

, δ =
β A2

2(α + β A2)
. (30)
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Fig. 4. Comparison of approximate periodic solutions of bucking of a column (case 1) with the exact one for m = 1.0, l = 1.5, P = 5.0, k1 = 5.0 and
k3 = 6.0 with u(0) = 3.0.
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Fig. 5. Comparison of approximate periodic solutions of bucking of a column (case 1) with the exact one form = l = P = k1 = 10.0, and k3 = 50.0 with
u(0) = 10.0.

Substituting presented α and β values into Eq. (30) give the exact frequencies for case 1, 2, and 3 in the form of
Eqs. (31)–(33) respectively:

ωex(A) =
π

2


k1l3 − 2Pl2 + A2k3l3 − 2A2P

ml3

∫ π/2

0

d t
1 − δ sin2 t

−1

,

δ =
(l3k3 − 2P)A2

2(k1l3 − 2Pl2 + A2k3l3 − 2A2P)

(31)

ωex(A) =
π

2


(k1 + 2k2) + 2A2k3

m

∫ π/2

0

dt
1 − δ sin2 t

−1

,

δ =
2k3A2

2(k1 + 2k2) + 2k3A2
.

(32)

ωex(A) =
π

2


(m1 + m2)

m1m2
(k1 + k2A2)

∫ π/2

0

dt
1 − δ sin2 t

−1

,

δ =
k2(m1 + m2)A2

2(k1(m1 + m2) + k2(m1 + m2)A2)
.

(33)

To illustrate and verify accuracy of this analytical approach, comparisons of analytical and exact results for the practical
cases are presented in Tables 1–3 and Figs. 4–6. The following parameters and initial values have been used for assessing
the accuracy of the presented method: The required parameters for three cases are listed as m, P, l, k1, k3, A for case 1,m,
k1, k2, k3, X0, Y0 for case 2 andm1,m2, k1, k2, X0, Y0 for case 3, respectively.
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Fig. 6. Comparison of approximate periodic solutions of bucking of a column (case 1) with the exact one for m = 100.0, l = 50.0, P = 150.0, k1 = 70.0
and k3 = 20.0 with u(0) = 100.0.

6. Conclusions

The Max–Min Approach (MMA) has been utilized to obtain the first and second-order approximate frequencies and
periods for single and two degrees of freedom (SDOF and TDOF) systems. The Max–Min method arose from an ancient
Chinese inequality, called He Chengtian’s Inequality and proposed by Ji-Huan He. Three nonlinear oscillation systems have
been investigated representing a column to study the static stability by determining the nature of the singular point at u = 0
of the dynamic equations. Results were given and discussion was done; it was demonstrated that excellent agreement of
the approximate solutions with the exact solution are achieved by (MMA).
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