219 research outputs found
The Evidence for a Pentaquark Signal and Kinematic Reflections
Several recent experiments have reported evidence for a narrow baryon
resonance with positive strangeness () at a mass of 1.54 GeV/.
Baryons with cannot be conventional states and the reports have
thus generated much theoretical speculation about the nature of possible
baryons, including a 5-quark, or pentaquark, interpretation. We show that
narrow enhancements in the effective mass spectrum can be generated as
kinematic reflections resulting from the decay of mesons, such as the
, the and the .Comment: 4 pages, 4 figure
Updated precision measurement of the average lifetime of B hadrons
The measurement of the average lifetime of B hadrons using inclusively reconstructed secondary vertices has been updated using both an improved processing of previous data and additional statistics from new data. This has reduced the statistical and systematic uncertainties and gives \tau_{\mathrm{B}} = 1.582 \pm 0.011\ \mathrm{(stat.)} \pm 0.027\ \mathrm{(syst.)}\ \mathrm{ps.} Combining this result with the previous result based on charged particle impact parameter distributions yields \tau_{\mathrm{B}} = 1.575 \pm 0.010\ \mathrm{(stat.)} \pm 0.026\ \mathrm{(syst.)}\ \mathrm{ps.
Wissenschaftlicher Zwischenbericht. BMBF Fördervorhaben Experimente mit DELPHI, April 1996 - März 1998 [online]
The present and future of QCD
This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades
Measurement of inclusive K*0(892), phi(1020) and K*0_2(1430) production in hadronic Z decays
The inclusive production of the neutral vector mesons K*0(892) and φ(1020), and of the tensor meson K2*0(1430), in hadronic decays of the Z has been measured by the DELPHI detector at LEP. The average production rates per hadronic Z decay have been determined to be 0.77 ± 0.08 K*0(892), 0.104 ± 0.008 φ(1020) and 0.079 ± 0.040 K2*0(1430). The ratio of the tensor-to-vector meson production yields, 〈K2*0(1430)〉/〈K *0(892)〉 = 0.10± 0.05, is smaller than the 〈f2(1270)〉/〈ρ0(770)〉 and 〈f2′(1525)〉 /〈φ(1020)〉 ratios measured by DELPHI. The production rates and differential cross sections are compared with the predictions of JETSET 7.4 tuned to the DELPHI data and of HERWIG 5.8. The K*0(892) and φ(1020) data are compatible with model predictions, but a large disagreement is observed for the K2*0(1430)
Taxa de fertilidade de novilhas de diferentes grupos genéticos com primeiro serviço aos 14 meses de idade
Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube
The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by Antares, within ±500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2×1051-2×1054 erg. © 2017 American Physical Society
Search for promptly produced heavy quarkonium states in hadronic Z decays
A search has been made for direct production of heavy quarkonium states in more than 3 million hadronic Z^{0} decays in the 1991-1994 DELPHI data. Prompt J/\psi, \psi(2S) and \Upsilon candidates have been searched for through their leptonic decay modes using criteria based on the kinematics and decay vertex positions. New upper limits are set at the 90 \% confidence level for {Br( Z^0 \rightarrow \left( Q \bar{Q} \right) X ) / Br( Z^0 \rightarrow \mbox{hadrons})} for various strong production mechanisms of J/\psi and \Upsilon; these range down to 0.9 \times 10^{-4}. The limits are set in the presence of a small excess (\sim 1 \% statistical probability of a background fluctuation) in the sum of candidates from prompt J/\psi, \psi(2S), \Upsilon(1S), \Upsilon(2S) and \Upsilon(3S) relative to the estimated backgrou
- …
