1,262 research outputs found

    Magnetic-interference patterns in Josephson junctions with d+is symmetry

    Full text link
    The magnetic interference pattern and the spontaneous flux in unconventional Josephson junctions of superconductors with d+is symmetry are calculated for different reduced junction lengths and the relative factor of the d and s wave components. This is a time reversal broken symmetry state. We study the stability of the fractional vortex and antivortex which are spontaneously formed and examine their evolution as we change the length and the relative factor of d and s wave components. The asymmetry in the field modulated diffraction pattern exists for lengths as long as L=10\lambda_J.Comment: 8 pages, 6 eps files, submitted to PR

    Harvesting Environmental Microalgal Blooms for Remediation and Resource Recovery: A Laboratory Scale Investigation with Economic and Microbial Community Impact Assessment

    Get PDF
    A laboratory based microflotation rig termed efficient FLOtation of Algae Technology (eFLOAT) was used to optimise parameters for harvesting microalgal biomass from eutrophic water systems. This was performed for the dual objectives of remediation (nutrient removal) and resource recovery. Preliminary experiments demonstrated that chitosan was more efficient than alum for flocculation of biomass and the presence of bacteria could play a positive role and reduce flocculant application rates under the natural conditions tested. Maximum biomass removal from a hyper-eutrophic water retention pond sample was achieved with 5 mg·L-1 chitosan (90% Chlorophyll a removal). Harvesting at maximum rates showed that after 10 days, the bacterial diversity is significantly increased with reduced cyanobacteria, indicating improved ecosystem functioning. The resource potential within the biomass was characterized by 9.02 μg phosphate, 0.36 mg protein, and 103.7 μg lipid per mg of biomass. Fatty acid methyl ester composition was comparable to pure cultures of microalgae, dominated by C16 and C18 chain lengths with saturated, monounsaturated, and polyunsaturated fatty acids. Finally, the laboratory data was translated into a full-size and modular eFLOAT system, with estimated costs as a novel eco-technology for efficient algal bloom harvesting

    Metabolic Futile Cycles and Their Functions: A Systems Analysis of Energy and Control

    Full text link
    It has long been hypothesized that futile cycles in cellular metabolism are involved in the regulation of biochemical pathways. Following the work of Newsholme and Crabtree, we develop a quantitative theory for this idea based on open-system thermodynamics and metabolic control analysis. It is shown that the {\it stoichiometric sensitivity} of an intermediary metabolite concentration with respect to changes in steady-state flux is governed by the effective equilibrium constant of the intermediate formation, and the equilibrium can be regulated by a futile cycle. The direction of the shift in the effective equilibrium constant depends on the direction of operation of the futile cycle. High stoichiometric sensitivity corresponds to ultrasensitivity of an intermediate concentration to net flow through a pathway; low stoichiometric sensitivity corresponds to super-robustness of concentration with respect to changes in flux. Both cases potentially play important roles in metabolic regulation. Futile cycles actively shift the effective equilibrium by expending energy; the magnitude of changes in effective equilibria and sensitivities is a function of the amount of energy used by a futile cycle. This proposed mechanism for control by futile cycles works remarkably similarly to kinetic proofreading in biosynthesis. The sensitivity of the system is also intimately related to the rate of concentration fluctuations of intermediate metabolites. The possibly different roles of the two major mechanisms for cellular biochemical regulation, namely reversible chemical modifications via futile cycles and shifting equilibrium by macromolecular binding, are discussed.Comment: 11 pages, 5 figure

    Critical currents in Josephson junctions, with unconventional pairing symmetry: dx2y2+isd_{x^2-y^2}+is versus dx2y2+idxyd_{x^2-y^2}+id_{xy}

    Full text link
    Phenomenological Ginzburg-Landau theory is used to calculate the possible spontaneous vortex states that may exist at corner junctions of dx2y2+ixd_{x^2-y^2}+ix-wave, (where x=sx=s or x=dxyx=d_{xy}) and s-wave superconductors. We study the magnetic flux and the critical current modulation with the junction orientation angle θ\theta, the magnitude of the order parameter, and the magnetic field HH. It is seen that the critical current IcI_c versus the magnetic flux Φ\Phi relation is symmetric / asymmetric for x=dxy/sx=d_{xy}/s when the orientation is exactly such that the lobes of the dominant dx2y2d_{x^2-y^2}-wave order parameter points towards the two junctions, which are at right angles for the corner junction. The conclusion is that a measurement of the Ic(Φ)I_c(\Phi) relation may distinguish which symmetry (dx2y2+isd_{x^2-y^2}+is or dx2y2+idxyd_{x^2-y^2}+id_{xy}) the order parameter has.Comment: 11 pages with 11 figures, Changed conten

    Slepton Flavor Nonuniversality, the Muon EDM and its Proposed sensitive Search at Brookhaven

    Full text link
    We analyze the electric dipole moment of the electron (ded_e), of the neutron (dnd_n) and of the muon (dμd_{\mu}) using the cancellation mechanism in the presence of nonuniversalities of the soft breaking parameters. It is shown that the nonuniversalities in the slepton sector produce a strong violation of the scaling relation dμ/demμ/med_{\mu}/d_e\simeq m_{\mu}/m_e in the cancellation region. An analysis of de,dnd_e, d_n and dμd_{\mu} under the constraints of the current experimental limits on ded_e and dnd_n and under the constraints of the recent Brookhaven result on gμ2g_{\mu}-2 shows that in the non-scaling region dμd_{\mu} can be as large as (1024102310^{-24}-10^{-23})ecm and thus within reach of the recently proposed Brookhaven experiment for a sensitive search for dμd_{\mu} at the level of 102410^{-24} ecm.Comment: 24 pages, Latex, including 5 figures with additional reference

    Fractional vortices on grain boundaries --- the case for broken time reversal symmetry in high temperature superconductors

    Full text link
    We discuss the problem of broken time reversal symmetry near grain boundaries in a d-wave superconductor based on a Ginzburg-Landau theory. It is shown that such a state can lead to fractional vortices on the grain boundary. Both analytical and numerical results show the structure of this type of state.Comment: 9 pages, RevTeX, 5 postscript figures include

    A Study of the S=1/2 Alternating Chain using Multiprecision Methods

    Full text link
    In this paper we present results for the ground state and low-lying excitations of the S=1/2S=1/2 alternating Heisenberg antiferromagnetic chain. Our more conventional techniques include perturbation theory about the dimer limit and numerical diagonalization of systems of up to 28 spins. A novel application of multiple precision numerical diagonalization allows us to determine analytical perturbation series to high order; the results found using this approach include ninth-order perturbation series for the ground state energy and one magnon gap, which were previously known only to third order. We also give the fifth-order dispersion relation and third-order exclusive neutron scattering structure factor for one-magnon modes and numerical and analytical binding energies of S=0 and S=1 two-magnon bound states.Comment: 16 pages, 9 figures. for submission to Phys.Rev.B. PICT files of figs available at http://csep2.phy.ornl.gov/theory_group/people/barnes/barnes.htm

    CDMS, Supersymmetry and Extra Dimensions

    Get PDF
    The CDMS experiment aims to directly detect massive, cold dark matter particles originating from the Milky Way halo. Charge and lattice excitations are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK, allowing to separate nuclear recoils from the dominating electromagnetic background. The operation of 12 detectors in the Soudan mine for 75 live days in 2004 delivered no evidence for a signal, yielding stringent limits on dark matter candidates from supersymmetry and universal extra dimensions. Thirty Ge and Si detectors are presently installed in the Soudan cryostat, and operating at base temperature. The run scheduled to start in 2006 is expected to yield a one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on sources and detection of dark matter and dark energy in the universe, Marina del Rey, Feb 22-24, 200

    The effect of damage on the energy absorption potential of composite structures

    Get PDF
    This thesis describes work undertaken to investigate the effects of damage on the energy absorption potential of composite tubes. Tubes of various geometries and manufactured from either continuous filament random mat (CoFRM) or glass braid and polyester resin were subjected to various types of damage before testing. Damage types consisted of drilled holes, to simulate the use of drilling components for the need of assembly, impacts, to simulate damage that may occur through tool drops or items being kicked up during use and PET inserts to simulate delamination. Large glass CoFRM/polyester tubes with an outer diameter of 89.1mm and varying wall thicknesses were crushed quasi-statically at a speed of 5mmlmin. Small CoFRM and braided glass/polyester tubes with an outer diameter of 38.1mm and a 2mm wall thickness were tested quasi statically and dynamically at a speed of 5m1s. Tubes were tested undamaged and containing various sizes of holes, simulated delamination and impacts. Specific energy absorptions (SEA) and failure modes were compared. Threshold values of damage size have been found for each tube and test type, above which unstable failures and subsequent unpredictable reductions in energy absorptions occur. The small CoFRM tubes showed a decrease in SEA as the test rate increased and this was attributed to the rate dependency of the resin, causing greater fragmentation allowing fibres to bend more easily and without fracturing. The braided small tubes showed an increase in SEA as the test rate increased due to a change in the mode of failure attributed to a higher compressive strength at the increased rate. Relatively small hole sizes and impacts, of 5mm and 1.5J-3J, were seen to reduce the energy absorption of the materials tested at quasi-static test speeds. However, an increase in damage tolerance was identified as test rate increased and this was attributed to an increase in compressive strength and fracture toughness, and reduction in crush load, as the speed of test increased
    corecore