5,453 research outputs found

    Interplay of structure and spin-orbit strength in magnetism of metal-benzene sandwiches: from single molecules to infinite wires

    Full text link
    Based on first-principles density functional theory calculations we explore electronic and magnetic properties of experimentally producible sandwiches and infinite wires made of repeating benzene molecules and transition-metal atoms of V, Nb, and Ta. We describe the bonding mechanism in the molecules and in particular concentrate on the origin of magnetism in these structures. We find that all the considered systems have sizable magnetic moments and ferromagnetic spin-ordering, with the single exception of the V3-Bz4 molecule. By including the spin-orbit coupling into our calculations we determine the easy and hard axes of the magnetic moment, the strength of the uniaxial magnetic anisotropy energy (MAE), relevant for the thermal stability of magnetic orientation, and the change of the electronic structure with respect to the direction of the magnetic moment, important for spin-transport properties. While for the V-based compounds the values of the MAE are only of the order of 0.05-0.5 meV per metal atom, increasing the spin-orbit strength by substituting V with heavier Nb and Ta allows to achieve an increase in anisotropy values by one to two orders of magnitude. The rigid stability of magnetism in these compounds together with the strong ferromagnetic ordering makes them attractive candidates for spin-polarized transport applications. For a Nb-benzene infinite wire the occurrence of ballistic anisotropic magnetoresistance is demonstrated.Comment: 23 pages, 8 figure

    Valley splitting of Si/SiGe heterostructures in tilted magnetic fields

    Full text link
    We have investigated the valley splitting of two-dimensional electrons in high quality Si/Si1−x_{1-x}Gex_x heterostructures under tilted magnetic fields. For all the samples in our study, the valley splitting at filling factor ν=3\nu=3 (Δ3\Delta_3) is significantly different before and after the coincidence angle, at which energy levels cross at the Fermi level. On both sides of the coincidence, a linear density dependence of Δ3\Delta_3 on the electron density was observed, while the slope of these two configurations differs by more than a factor of two. We argue that screening of the Coulomb interaction from the low-lying filled levels, which also explains the observed spin-dependent resistivity, is responsible for the large difference of Δ3\Delta_3 before and after the coincidence.Comment: REVTEX 4 pages, 4 figure

    Whole genome sequencing of one complex pedigree illustrates challenges with genomic medicine

    Get PDF
    BACKGROUND: Human Phenotype Ontology (HPO) has risen as a useful tool for precision medicine by providing a standardized vocabulary of phenotypic abnormalities to describe presentations of human pathologies; however, there have been relatively few reports combining whole genome sequencing (WGS) and HPO, especially in the context of structural variants. METHODS: We illustrate an integrative analysis of WGS and HPO using an extended pedigree, which involves Prader-Willi Syndrome (PWS), hereditary hemochromatosis (HH), and dysautonomia-like symptoms. A comprehensive WGS pipeline was used to ensure reliable detection of genomic variants. Beyond variant filtering, we pursued phenotypic prioritization of candidate genes using Phenolyzer. RESULTS: Regarding PWS, WGS confirmed a 5.5 Mb de novo deletion of the parental allele at 15q11.2 to 15q13.1. Phenolyzer successfully returned the diagnosis of PWS, and pinpointed clinically relevant genes in the deletion. Further, Phenolyzer revealed how each of the genes is linked with the phenotypes represented by HPO terms. For HH, WGS identified a known disease variant (p.C282Y) in HFE of an affected female. Analysis of HPO terms alone fails to provide a correct diagnosis, but Phenolyzer successfully revealed the phenotype-genotype relationship using a disease-centric approach. Finally, Phenolyzer also revealed the complexity behind dysautonomia-like symptoms, and seven variants that might be associated with the phenotypes were identified by manual filtering based on a dominant inheritance model. CONCLUSIONS: The integration of WGS and HPO can inform comprehensive molecular diagnosis for patients, eliminate false positives and reveal novel insights into undiagnosed diseases. Due to extreme heterogeneity and insufficient knowledge of human diseases, it is also important that phenotypic and genomic data are standardized and shared simultaneously

    Interplay of Mott Transition and Ferromagnetism in the Orbitally Degenerate Hubbard Model

    Full text link
    A slave boson representation for the degenerate Hubbard model is introduced. The location of the metal to insulator transition that occurs at commensurate densities is shown to depend weakly on the band degeneracy M. The relative weights of the Hubbard sub-bands depend strongly on M, as well as the magnetic properties. It is also shown that a sizable Hund's rule coupling is required in order to have a ferromagnetic instability appearing. The metal to insulator transition driven by an increase in temperature is a strong function of it.Comment: 5 pages, revtex, 5 postscript figures, submitted to Phys. Rev.

    Bang-bang control of fullerene qubits using ultra-fast phase gates

    Full text link
    Quantum mechanics permits an entity, such as an atom, to exist in a superposition of multiple states simultaneously. Quantum information processing (QIP) harnesses this profound phenomenon to manipulate information in radically new ways. A fundamental challenge in all QIP technologies is the corruption of superposition in a quantum bit (qubit) through interaction with its environment. Quantum bang-bang control provides a solution by repeatedly applying `kicks' to a qubit, thus disrupting an environmental interaction. However, the speed and precision required for the kick operations has presented an obstacle to experimental realization. Here we demonstrate a phase gate of unprecedented speed on a nuclear spin qubit in a fullerene molecule (N@C60), and use it to bang-bang decouple the qubit from a strong environmental interaction. We can thus trap the qubit in closed cycles on the Bloch sphere, or lock it in a given state for an arbitrary period. Our procedure uses operations on a second qubit, an electron spin, in order to generate an arbitrary phase on the nuclear qubit. We anticipate the approach will be vital for QIP technologies, especially at the molecular scale where other strategies, such as electrode switching, are unfeasible

    CO adsorption on neutral iridium clusters

    Get PDF
    The adsorption of carbon monoxide on neutral iridium clusters in the size range of n = 3 to 21 atoms is investigated with infrared multiple photon dissociation spectroscopy. For each cluster size only a single v(CO) band is present with frequencies in the range between 1962 cm-1 (n = 8) and 1985 cm-1 (n = 18) which can be attributed to an atop binding geometry. This behaviour is compared to the CO binding geometries on clusters of other group 9 and 10 transition metals as well as to that on extended surfaces. The preference of Ir for atop binding is rationalized by relativistic effects on the electronic structure of the later 5d metals

    The Role of Mesoscale Plasma Sheet Dynamics in Ring Current Formation

    Get PDF
    During geomagnetically active periods ions are transported from the magnetotail into the inner magnetosphere and accelerated to energies of tens to hundreds of keV. These energetic ions, of mixed composition with the most important species being H+ and O+, become the dominant source of plasma pressure in the inner magnetosphere. Ion transport and acceleration can occur at different spatial and temporal scales ranging from global quasi-steady convection to localized impulsive injection events and may depend on the ion gyroradius. In this study we ascertain the relative importance of mesoscale flow structures and the effects of ion non-adiabaticity on the produced ring current. For this we use: global magnetohydrodynamic (MHD) simulations to generate self-consistent electromagnetic fields under typical driving conditions which exhibit bursty bulk flows (BBFs); and injected test particles, initialized to match the plasma moments of the MHD simulation, and subsequently evolved according to the kinetic equations of motion. We show that the BBFs produced by our simulation reproduce thermodynamic and magnetic statistics from in situ measurements and are numerically robust. Mining the simulation data we create a data set, over a billion points, connecting particle transport to characteristics of the MHD flow. From this we show that mesoscale bubbles, localized depleted entropy regions, and particle gradient drifts are critical for ion transport. Finally we show, using identical particle ensembles with varying mass, that O+ non-adiabaticity creates qualitative differences in energization and spatial distribution while H+ non-adiabaticity has non-negligible implications for loss timescales

    Low-field magnetoresistance in GaAs 2D holes

    Full text link
    We report low-field magnetotransport data in two-dimensional hole systems in GaAs/AlGaAs heterostructures and quantum wells, in a large density range, 2.5×1010≤p≤4.0×10112.5 \times 10^{10} \leq p \leq 4.0 \times 10^{11} cm−2^{-2}, with primary focus on samples grown on (311)A GaAs substrates. At high densities, p≳1×1011p \gtrsim 1 \times 10^{11} cm−2^{-2}, we observe a remarkably strong positive magnetoresistance. It appears in samples with an anisotropic in-plane mobility and predominantly along the low-mobility direction, and is strongly dependent on the perpendicular electric field and the resulting spin-orbit interaction induced spin-subband population difference. A careful examination of the data reveals that the magnetoresistance must result from a combination of factors including the presence of two spin-subbands, a corrugated quantum well interface which leads to the mobility anisotropy, and possibly weak anti-localization. None of these factors can alone account for the observed positive magnetoresistance. We also present the evolution of the data with density: the magnitude of the positive magnetoresistance decreases with decreasing density until, at the lowest density studied (p=2.5×1010p = 2.5 \times 10^{10} cm−2^{-2}), it vanishes and is replaced by a weak negative magnetoresistance.Comment: 8 pages, 8 figure

    Electron spin dynamics in quantum dots and related nanostructures due to hyperfine interaction with nuclei

    Get PDF
    We review and summarize recent theoretical and experimental work on electron spin dynamics in quantum dots and related nanostructures due to hyperfine interaction with surrounding nuclear spins. This topic is of particular interest with respect to several proposals for quantum information processing in solid state systems. Specifically, we investigate the hyperfine interaction of an electron spin confined in a quantum dot in an s-type conduction band with the nuclear spins in the dot. This interaction is proportional to the square modulus of the electron wave function at the location of each nucleus leading to an inhomogeneous coupling, i.e. nuclei in different locations are coupled with different strength. In the case of an initially fully polarized nuclear spin system an exact analytical solution for the spin dynamics can be found. For not completely polarized nuclei, approximation-free results can only be obtained numerically in sufficiently small systems. We compare these exact results with findings from several approximation strategies.Comment: 26 pages, 9 figures. Topical Review to appear in J. Phys.: Condens. Matte
    • …
    corecore