388 research outputs found

    Deeply subrecoil two-dimensional Raman cooling

    Full text link
    We report the implementation of a two-dimensional Raman cooling scheme using sequential excitations along the orthogonal axes. Using square pulses, we have cooled a cloud of ultracold Cesium atoms down to an RMS velocity spread of 0.39(5) recoil velocity, corresponding to an effective temperature of 30 nK (0.15 T_rec). This technique can be useful to improve cold atom atomic clocks, and is particularly relevant for clocks in microgravity.Comment: 8 pages, 6 figures, submitted to Phys. Rev.

    Strongly inhibited transport of a 1D Bose gas in a lattice

    Full text link
    We report the observation of strongly damped dipole oscillations of a quantum degenerate 1D atomic Bose gas in a combined harmonic and optical lattice potential. Damping is significant for very shallow axial lattices (0.25 photon recoil energies), and increases dramatically with increasing lattice depth, such that the gas becomes nearly immobile for times an order of magnitude longer than the single-particle tunneling time. Surprisingly, we see no broadening of the atomic quasimomentum distribution after damped motion. Recent theoretical work suggests that quantum fluctuations can strongly damp dipole oscillations of 1D atomic Bose gas, providing a possible explanation for our observations.Comment: 5 pages, 4 figure

    Imaging the phase of an evolving Bose-Einstein condensate wavefunction

    Get PDF
    We demonstrate a spatially resolved autocorrelation measurement with a Bose-Einstein condensate (BEC) and measure the evolution of the spatial profile of its quantum mechanical phase. Upon release of the BEC from the magnetic trap, its phase develops a form that we measure to be quadratic in the spatial coordinate. Our experiments also reveal the effects of the repulsive interaction between two overlapping BEC wavepackets and we measure the small momentum they impart to each other

    Coherence properties of an atom laser

    Full text link
    We study the coherence properties of an atom laser, which operates by extracting atoms from a gaseous Bose-Einstein condensate via a two-photon Raman process, by analyzing a recent experiment. We obtain good agreement with the experimental data by solving the time-dependent Gross-Pitaevskii equation in three dimensions both numerically and with a Thomas-Fermi model. The coherence length is strongly affected by the space-dependent phase developed by the condensate when the trapping potential is turned off.Comment: 11 pages, 2 Postscript figure

    Coherence Properties of an Atom Laser

    Get PDF
    We study the coherence properties of an atom laser, which operates by extracting atoms from a gaseous Bose-Einstein condensate via a two-photon Raman process, by analysing a recent experiment (Hagley et al1999 Phys. Rev. Lett.833112). We obtain good agreement with the experimental data by solving the time-dependent Gross-Pitaevskii equation in three dimensions both numerically and with a Thomas-Fermi model. The coherence is strongly affected by the space-dependent phase developed by the condensate when the trapping potential is turned off

    Neutral Plasma Oscillations at Zero Temperature

    Full text link
    We use cold plasma theory to calculate the response of an ultracold neutral plasma to an applied rf field. The free oscillation of the system has a continuous spectrum and an associated damped quasimode. We show that this quasimode dominates the driven response. We use this model to simulate plasma oscillations in an expanding ultracold neutral plasma, providing insights into the assumptions used to interpret experimental data [Phys. Rev. Lett. 85, 318 (2000)].Comment: 4.3 pages, including 3 figure

    An Optical Backplane Demonstrator System Based on FET-SEED Smart Pixel Arrays and Diffractive Lenslet Arrays

    Get PDF
    We have demonstrated a representative portion of an optical backplane using FET-SEED smart pixels and free-space optics to interconnect printed circuit boards (PCB\u27s) in a two board, unidirectional link configuration. 4Ă—4 arrays of FET-SEED transceivers were designed, fabricated, and packaged all the PCB level, The optical interconnection was constructed using diffractive microoptics, and custom optomechanics. The system was operated in two modes, one showing high data throughput, 100 MBit/sec, and the other demonstrating large connection densities, 2222 channel/cm2

    Photoassociation of sodium in a Bose-Einstein condensate

    Full text link
    We report on the formation of ultra-cold Na2_2 molecules using single-photon photoassociation of a Bose-Einstein condensate. The photoassociation rate, linewidth and light shift of the J=1, v=135v=135 vibrational level of the \mterm{A}{1}{+}{u} molecular bound state have been measured. We find that the photoassociation rate constant increases linearly with intensity, even where it is predicted that many-body effects might limit the rate. Our observations are everywhere in good agreement with a two-body theory having no free parameters.Comment: Fixes to the figures and references. Just the normal human stupidity type stuff, nothing Earth-shatterin
    • …
    corecore