255 research outputs found

    Acidification in corn monocultures favor fungi, ammonia oxidizing bacteria, and nirK-denitrifier groups

    Get PDF
    Agricultural practices of no-till and crop rotations are critical to counteract the detrimental effects of monocultures and tillage operations on ecosystem services related to soil health such as microbial N cycling. The present study explored the main steps of the microbial N cycle, using targeted gene abundance as a proxy, and concerning soil properties, following 19 and 20 years of crop monocultures and rotations of corn (Zea mays L.), and soybean [Glycine max (L.) Merr.], either under no-till or chisel tillage. Real-time quantitative polymerase chain reaction (qPCR) was implemented to estimate phylogenetic groups and functional genes related to the microbial N cycle: nifH (N2 fixation), amoA (nitrification) and nirK, nirS, and nosZ (denitrification). Our results indicate that long-term crop rotation and tillage decisions affect soil health as it relates to soil properties and microbial parameters. No-till management increased soil organic matter (SOM), decreased soil pH, and increased copy numbers of AOB (ammonia oxidizing bacteria). Crop rotations with more corn increased SOM, reduced soil pH, reduced AOA (ammonia oxidizing archaea) copy numbers, and increased AOB and fungal ITS copy numbers. NirK denitrifier groups were also enhanced under continuous corn. Altogether, the more corn years included in a crop rotation multiplies the amount of N needed to sustain yield levels, thereby intensifying the N cycle in these systems, potentially leading to acidification, enhanced bacterial nitrification, and creating an environment primed for N losses and increased N2O emissions.Fil: Behnke, G. D.. University of Illinois; Estados UnidosFil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Riggins, C. W.. University of Illinois; Estados UnidosFil: Rodríguez-Zas, S.. University of Illinois; Estados UnidosFil: Huang, L.. University of Illinois; Estados UnidosFil: Villamil, Maria Bonita. University of Illinois; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Soil Microbial Indicators within Rotations and Tillage Systems

    Get PDF
    Recent advancements in agricultural metagenomics allow for characterizing microbial indicators of soil health brought on by changes in management decisions, which ultimately affect the soil environment. Field-scale studies investigating the microbial taxa from agricultural experiments are sparse, with none investigating the long-term effect of crop rotation and tillage on microbial indicator species. Therefore, our goal was to determine the effect of rotations (continuous corn, CCC; continuous soybean, SSS; and each phase of a corn-soybean rotation, Cs and Sc) and tillage (no-till, NT; and chisel tillage, T) on the soil microbial community composition following 20 years of management. We found that crop rotation and tillage influence the soil environment by altering key soil properties, such as pH and soil organic matter (SOM). Monoculture corn lowered pH compared to SSS (5.9 vs. 6.9, respectively) but increased SOM (5.4% vs. 4.6%, respectively). Bacterial indicator microbes were categorized into two groups: SOM dependent and acidophile vs. N adverse and neutrophile. Fungi preferred the CCC rotation, characterized by low pH. Archaeal indicators were mainly ammonia oxidizers with species occupying niches at contrasting pHs. Numerous indicator microbes are involved with N cycling due to the fertilizer-rich environment, prone to aquatic or gaseous losses.Fil: Behnke, Gevan D.. University of Illinois at Urbana; Estados UnidosFil: Kim, Nakian. University of Illinois at Urbana; Estados UnidosFil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Riggins, Chance W.. University of Illinois at Urbana; Estados UnidosFil: Rodriguez Zas, Sandra. University of Illinois at Urbana; Estados UnidosFil: Villamil, Maria Bonita. University of Illinois at Urbana; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    A Longitudinal Study of the Microbial Basis of Nitrous Oxide Emissions Within a Long-Term Agricultural Experiment

    Get PDF
    Much of the global nitrous oxide emissions are derived from agricultural management driving microbial N transformations. Crop rotation, no-till, and cover cropping are feasible conservation agronomic strategies used to prevent N losses to the environment, though their effect on soil microbial N cycling at the field scale remains relatively unknown. Our goal was to determine the effect of crop rotation (continuous corn [Zea mays L.], CCC; and continuous soybean [Glycine max (L.) Merr.], SSS), tillage (no-till, NT; and chisel tillage, T), and cover crops (cover crop mixture, CC; and no cover crop, NCC) on the quantification of functional genes related to the N cycle from different times throughout the growing season. The study was conducted during the growing season of the cash crops following the first season of cover crops introduced after 23 years of management. Using quantitative polymerase chain reaction (qPCR) techniques, we quantified nifH (N2 fixation), amoA (nitrification) and nirK, nirS, and nosZ (denitrification). Our results show that CCC increased nitrous oxide emissions by 44% compared to SSS and reduced soil pH by nearly 1 unit. The reduction in soil pH, coupled with an increase in fertilizer-derived ammonium, caused ammonia-oxidizing bacteria (AOB) and nirK copy numbers to increase. The SSS rotation showed opposite results. Bacterial denitrification via the nirK pathway was likely the N cycle mechanism behind nitrous oxide emissions in CCC. The cover crop mixture of cereal rye [Secale cereale L.] and hairy vetch [Vicia villosa Roth] reduced soil nitrate levels, though they did increase nitrous oxide emissions, likely due to priming and the inclusion of a legume in the cover crop mixture. Nitrous oxide emissions were affected by sampling date, crop rotation, and cover crop use, suggesting management factors that add abundantly available N alter the microbial N cycle directly or indirectly. Chisel tillage increased the abundance of all N cycle genes compared to no-till. Together, our work adds further insight into the microbial N cycle, especially nitrous oxide evolution, from three common conservation agricultural management practices, contributing to our understanding of key soil biogeochemical processes.Fil: Behnke, Gevan D.. University of Illinois at Urbana; Estados UnidosFil: Kim, Nakian. University of Illinois at Urbana; Estados UnidosFil: Riggins, Chance W.. University of Illinois at Urbana; Estados UnidosFil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Rodriguez Zas, Sandra L.. University of Illinois at Urbana; Estados UnidosFil: Villamil, Maria Bonita. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Illinois at Urbana; Estados Unido

    Consumption caught in the cash nexus.

    Get PDF
    During the last thirty years, ‘consumption’ has become a major topic in the study of contemporary culture within anthropology, psychology and sociology. For many authors it has become central to understanding the nature of material culture in the modern world but this paper argues that the concept is, in British writing at least, too concerned with its economic origins in the selling and buying of consumer goods or commodities. It is argued that to understand material culture as determined through the monetary exchange for things - the cash nexus - leads to an inadequate sociological understanding of the social relations with objects. The work of Jean Baudrillard is used both to critique the concept of consumption as it leads to a focus on advertising, choice, money and shopping and to point to a more sociologically adequate approach to material culture that explores objects in a system of models and series, ‘atmosphere’, functionality, biography, interaction and mediation

    Mutations of the BRAF gene in human cancer

    Get PDF
    Cancers arise owing to the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differentiation and death. As the first stage of a systematic genome-wide screen for these genes, we have prioritized for analysis signalling pathways in which at least one gene is mutated in human cancer. The RAS RAF MEK ERK MAP kinase pathway mediates cellular responses to growth signals. RAS is mutated to an oncogenic form in about 15% of human cancer. The three RAF genes code for cytoplasmic serine/threonine kinases that are regulated by binding RAS. Here we report BRAF somatic missense mutations in 66% of malignant melanomas and at lower frequency in a wide range of human cancers. All mutations are within the kinase domain, with a single substitution (V599E) accounting for 80%. Mutated BRAF proteins have elevated kinase activity and are transforming in NIH3T3 cells. Furthermore, RAS function is not required for the growth of cancer cell lines with the V599E mutation. As BRAF is a serine/threonine kinase that is commonly activated by somatic point mutation in human cancer, it may provide new therapeutic opportunities in malignant melanoma

    Recent Nuclear Astrophysics Measurements using the TwinSol Separator

    Get PDF
    Many astrophysical events, such as novae and X-ray bursts, are powered by reactions with radioactive nuclei. Studying the properties of these nuclei in the laboratory can therefore further our understanding of these astrophysical explosions. The TwinSol separator at the University of Notre Dame has recently been used to produce intense (∼106 pps) beams of 17F. In this article, some of the first measurements with these beams are discussed

    Co-Inhibition of BCL-W and BCL2 Restores Antiestrogen Sensitivity through BECN1 and Promotes an Autophagy-Associated Necrosis

    Get PDF
    BCL2 family members affect cell fate decisions in breast cancer but the role of BCL-W (BCL2L2) is unknown. We now show the integrated roles of the antiapoptotic BCL-W and BCL2 in affecting responsiveness to the antiestrogen ICI 182,780 (ICI; Fulvestrant Faslodex), using both molecular (siRNA; shRNA) and pharmacologic (YC137) approaches in three breast cancer variants; MCF-7/LCC1 (ICI sensitive), MCF-7/LCC9 (ICI resistant), and LY2 (ICI resistant). YC137 inhibits BCL-W and BCL2 and restores ICI sensitivity in resistant cells. Co-inhibition of BCL-W and BCL2 is both necessary and sufficient to restore sensitivity to ICI, and explains mechanistically the action of YC137. These data implicate functional cooperation and/or redundancy in signaling between BCL-W and BCL2, and suggest that broad BCL2 family member inhibitors will have greater therapeutic value than targeting only individual proteins. Whereas ICI sensitive MCF-7/LCC1 cells undergo increased apoptosis in response to ICI following BCL-W±BCL2 co-inhibition, the consequent resensitization of resistant MCF-7/LCC9 and LY2 cells reflects increases in autophagy (LC3 cleavage; p62/SQSTM1 expression) and necrosis but not apoptosis or cell cycle arrest. Thus, de novo sensitive cells and resensitized resistant cells die through different mechanisms. Following BCL-W+BCL2 co-inhibition, suppression of functional autophagy by 3-methyladenine or BECN1 shRNA reduces ICI-induced necrosis but restores the ability of resistant cells to die through apoptosis. These data demonstrate the plasticity of cell fate mechanisms in breast cancer cells in the context of antiestrogen responsiveness. Restoration of ICI sensitivity in resistant cells appears to occur through an increase in autophagy-associated necrosis. BCL-W, BCL2, and BECN1 integrate important functions in determining antiestrogen responsiveness, and the presence of functional autophagy may influence the balance between apoptosis and necrosis

    Using \u3csup\u3e19\u3c/sup\u3eF(\u3csup\u3e3\u3c/sup\u3eHe, t)\u3csup\u3e19\u3c/sup\u3eNe\u3csup\u3e∗\u3c/sup\u3e(γ) to study astrophysically important levels near the \u3csup\u3e18\u3c/sup\u3eF+ p threshold

    Get PDF
    A direct test of nova explosion models comes from the observation of γ rays created in the decay of radioactive isotopes produced in the nova. One such isotope, 18F, is believed to be the main source of observable γ rays at and below 511 keV. The main destruction mechanism of 18F is thought to be the 18F(p,α)15O reaction, and uncertainties in the reaction rate arise from uncertainties in the energies, spins, and parities of the nuclear levels in 19Ne above the 18F+p threshold. To measure the properties of these levels, the 19F(3He,t)19Ne-(γ) reaction was studied at Argonne National Laboratory and the Nuclear Science Laboratory at the University of Notre Dame

    Determining the \u3csup\u3e14\u3c/sup\u3eO(α,p)\u3csup\u3e17\u3c/sup\u3eF astrophysical rate from Measurements at TwinSol

    Get PDF
    The 14O(α,p)17F reaction is an important trigger reaction to the α-p process in X-ray bursts. The most stringent experimental constraints on its astrophysical rate come from measurements of the time-inverse reaction, 17F(p,α)14O. Previous studies of this inverse reaction have sufficiently characterized the high-energy dependence of the cross section but there are still significant uncertainties at lower energies. A new measurement of the 17F(p,α)14O cross section is underway at the Twin Solenoid (TwinSol) facility at the University of Notre Dame using an in-flight secondary 17F beam. The initial results are promising but improvements are needed to complete the measurement. The initial data and plans for an improved measurement are presented in this manuscript
    corecore