287 research outputs found

    Mars Observer Radar Altimeter Radiometer (MORAR)

    Get PDF
    The Mars Observer Project will permit the advancement of the state of the topographic and hypsometric knowledge of Mars to a level of 10 m or better over the surface of the planet Mars, the measurement of microwave surface brightness temperature of Mars with an accuracy of 15 to 20 K over 24 hours, and the measurement, globally, of surface returned power related to radar cross section with an accuracy of 1 dB and a repeatability of .5 dB. The MORAR Hardware Development, Ground Data Processing, and the Mission Operations will allow the accomplishment of these scientific objectives to define globally the topography of Mars at sufficient vertical resolution and spatial scale to address both large-scale geophysical and small-scale geologic problems, and to obtain global surface electrical and scattering properties of the upper several centimeters of the Martian surface for assessment of the composition, physical state, and volatile distribution of the surface

    Ocean topography experiment (TOPEX) radar altimeter

    Get PDF
    A spaceflight qualified Radar Altimeter capable of achieving the TOPEX Mission measurement precision requirement of 2-centimeters, is provided and its performance (Engineering Assessment) will be evaluated after launch and continuously during its 3-year mission operational period. Information will be provided to JPL about the calibration of the TOPEX Radar Altimeter. The specifications for the required data processing algorithms which will be necessary to convert the Radar Altimeter mission telemetry data into the geophysical data will also be provided. The stringent 2 cm precision requirement for ocean topography determination from space necessitated examining existing Radar Altimeter designs for their applicability towards TOPEX. As a result, a system configuration evolved using some flight proven designs in conjunction with needed improvements which include: (1) a second frequency or channel to remove the range delay or apparent height bias caused by the electron content of the ionosphere; (2) higher transmit pulse repetition frequencies for correlation benefits at higher sea states to maintain precision; and (3) a faster microprocessor to accommodate two channels of altimetry data. Additionally, examination of past altimeter programs associated data processing algorithms was accomplished to establish the TOPEX-class Radar Altimeter data processing algorithms, and the necessary direction was outlined to begin to generate these for the TOPEX Mission

    Further Notes on the Habits of Geotrupes

    Get PDF

    GEOSAT Follow-On (GFO) Altimeter Document Series, Volume 9. GFO and JASON Altimeter Engineering Assessment Report Update: GFO-Acceptance to December 18, 2006, JASON-Acceptance to December 24, 2006. Version 1: June 2007

    Get PDF
    The initial GFO Altimeter Engineering Assessment Report, March 2001 (NASA/TM-2001-209984/Ver.1/Vol.1) covered the GFO performance from Launch to Acceptance (10 February 1998 to 29 November 2000). The second of the series covered the performance from Acceptance to the end of Cycle 20 (29 November 2000 to 21 November 2001). The third of the series covered the performance from Acceptance to the end of Cycle 42 (29 November 2000 to 30 November 2002). The fourth of the series covered the performance from Acceptance to the end of Cycle 64 (29 November 2000 to 17 December 2003). The fifth of the series covered performance from Acceptance to the end of Cycle 86 (29 November 2000 to 17 December 2004). The sixth of the series covered performance from Acceptance to the end of Cycle 109 (29 November 2000 to 26 December 2005). In this year's GFO report, we have begun the inclusion of analyses of the JASON altimeter. In past years, JASON and TOPEX were compared during our assessment of the TOPEX altimeter; however, with the end of the TOPEX mission, we have developed methods to report on JASON as it relates to GFO. We see no change trend between the three altimeters and conclude all three are stable based on our cross comparison analyses

    GEOSAT Follow-On (GFO) Altimeter Document Series, Volume 8: GFO Altimeter Engineering Assessment Report Update:The First 109 Cycles Since Acceptance November 29, 2000 to December 26, 2005

    Get PDF
    The purpose of this document is to present and document GFO performance analyses and results. This is the fifth Assessment Report since the initial report. This report extends the performance assessment since acceptance to 26 December 2005. The initial GFO Altimeter Engineering Assessment Report, March 2001 (NASA/TM-2001-209984/Ver.1/Vol.1) covered the GFO performance from Launch to Acceptance (10 February 1998 to 29 November 2000). The second of the series covered the performance from Acceptance to the end of Cycle 20 (29 November 2000 to 21 November 2001). The third of the series covered the performance from Acceptance to the end of Cycle 42 (29 November 2000 to 30 November 2002). The fourth of the series covered the performance from Acceptance to the end of Cycle 64 (29 November 2000 to 17 December 2003). The fifth of the series covered performance from Acceptance to the end of Cycle 86 (29 November 2000 to 17 December 2004). Since launch, we have performed a variety of GFO performance studies; an accumulative index of those studies is provided in Appendix A

    GFO and JASON Altimeter Engineering Assessment Report. Update: GFO--Acceptance to December 27, 2007, JASON--Acceptance to December 26, 2007. Version 1: June 2008

    Get PDF
    The purpose of this document is to present and document GEOSAT Follow-On (GFO) performance analyses and results. This is the eighth Assessment Report since the initial report. This report extends the performance assessment since acceptance to 27 December 2007. Since launch, a variety of GFO performance studies have been performed: Appendix A provides an accumulative index of those studies. We began the inclusion of analyses of the JASON altimeter after the end of the Topographic Experiment (TOPEX) mission. Prior to this, JASON and TOPEX were compared during our assessment of theTOPEX altimeter. With the end of the TOPEX mission, we developed methods to report on JASON as it relates to GFO

    GFO and JASON Altimeter Engineering Assessment Report. Update: GFO-Acceptance to End of Mission on October 22, 2008, JASON-Acceptance to September 29, 2008

    Get PDF
    The purpose of this document is to present and document GEOSAT Follow-On (GFO) performance analyses and results. This is the ninth Assessment Report since the initial report and is our final one. This report extends the performance assessment since acceptance on November 29, 2000 to the end of mission (EOM) on October 22, 2008. Since launch, February 10, 1998 to the EOM, we performed a variety of GFO performance studies; Appendix A provides an accumulative index of those studies. We began the inclusion of analyses of the JASON altimeter after the end of the Topographic Experiment (TOPEX) mission. Prior to this, JASON and TOPEX were compared during our assessment of the TOPEX altimeter. With the end of the TOPEX mission, we developed methods to report on JASON as it related to GFO. It should be noted the GFO altimeter, after operating for over 7 years, was power cycled off to on and on to off approximately 14 times a day for over 18 months in space with no failure. The GFO altimeter proved to be a remarkable instrument providing stable ocean surface measurements for nearly eight years. This report completes our GFO altimeter performance assessment

    Electron-beam propagation in a two-dimensional electron gas

    Full text link
    A quantum mechanical model based on a Green's function approach has been used to calculate the transmission probability of electrons traversing a two-dimensional electron gas injected and detected via mode-selective quantum point contacts. Two-dimensional scattering potentials, back-scattering, and temperature effects were included in order to compare the calculated results with experimentally observed interference patterns. The results yield detailed information about the distribution, size, and the energetic height of the scattering potentials.Comment: 7 pages, 6 figure

    Simple Estimation of X- Trion Binding Energy in Semiconductor Quantum Wells

    Full text link
    A simple illustrative wave function with only three variational parameters is suggested to calculate the binding energy of negatively charged excitons (X-) as a function of quantum well width. The results of calculations are in agreement with experimental data for GaAs, CdTe and ZnSe quantum wells, which differ considerably in exciton and trion binding energy. The normalized X- binding energy is found to be nearly independent of electron-to-hole mass ratio for any quantum well heterostructure with conventional parameters. Its dependence on quantum well width follows an universal curve. The curve is described by a simple phenomenological equation.Comment: 8 pages, 3 Postscript figure

    Probing the potential landscape inside a two-dimensional electron-gas

    Full text link
    We report direct observations of the scattering potentials in a two-dimensional electron-gas using electron-beam diffaction-experiments. The diffracting objects are local density-fluctuations caused by the spatial and charge-state distribution of the donors in the GaAs-(Al,Ga)As heterostructures. The scatterers can be manipulated externally by sample illumination, or by cooling the sample down under depleted conditions.Comment: 4 pages, 4 figure
    • …
    corecore