834 research outputs found

    Immunohistological studies on neoplasms of female and male Onchocerca volvulus: filarial origin and absence of Wolbachia from tumor cells

    Get PDF
    Up to 5% of untreated female Onchocerca volvulus filariae develop potentially fatal pleomorphic neoplasms, whose incidence is increased following ivermectin treatment. We studied the occurrence of 8 filarial proteins and of Wolbachia endobacteria in the tumor cells. Onchocercomas from patients, untreated and treated with antibiotics and anthelminthics, were examined by immunohistology. Neoplasms were diagnosed in 112 of 3587 female and in 2 of 1570 male O. volvulus. The following proteins and other compounds of O. volvulus were expressed in the cells of the neoplasms: glutathione S-transferase 1, lysosomal aspartic protease, cAMP-dependent protein kinase, alpha-enolase, aspartate aminotransferase, ankyrin E1, tropomyosin, heat shock protein 60, transforming growth factor-beta, and prostaglandin E2. These findings prove the filarial origin of the neoplasms and confirm the pleomorphism of the tumor cells. Signs indicating malignancy of the neoplasms are described. Wolbachia were observed in the hypodermis, oocytes, and embryos of tumor-harbouring filariae using antibodies against Wolbachia surface protein, Wolbachia HtrA-type serine protease, and Wolbachia aspartate aminotransferase. In contrast, Wolbachia were not found in the cells of the neoplasms. Further, neoplasm-containing worms were not observed after more than 10 months after the start of sufficient treatment with doxycycline or doxycycline plus ivermectin

    Thermodynamics of quantum Brownian motion with internal degrees of freedom: the role of entanglement in the strong-coupling quantum regime

    Full text link
    We study the influence of entanglement on the relation between the statistical entropy of an open quantum system and the heat exchanged with a low temperature environment. A model of quantum Brownian motion of the Caldeira-Leggett type - for which a violation of the Clausius inequality has been stated by Th.M. Nieuwenhuizen and A.E. Allahverdyan [Phys. Rev. E 66, 036102 (2002)] - is reexamined and the results of the cited work are put into perspective. In order to address the problem from an information theoretical viewpoint a model of two coupled Brownian oscillators is formulated that can also be viewed as a continuum version of a two-qubit system. The influence of an additional internal coupling parameter on heat and entropy changes is described and the findings are compared to the case of a single Brownian particle.Comment: 10 pages, 11 figure

    The Infrared Behavior of Gluon and Ghost Propagators in Landau Gauge QCD

    Get PDF
    A solvable systematic truncation scheme for the Dyson-Schwinger equations of Euclidean QCD in Landau gauge is presented. It implements the Slavnov-Taylor identities for the three-gluon and ghost-gluon vertices, whereas irreducible four-gluon couplings as well as the gluon-ghost and ghost-ghost scattering kernels are neglected. The infrared behavior of gluon and ghost propagators is obtained analytically: The gluon propagator vanishes for small spacelike momenta whereas the ghost propagator diverges stronger than a massless particle pole. The numerical solutions are compared with recent lattice data for these propagators. The running coupling of the renormalization scheme approaches a fixed point, αc9.5\alpha_c \simeq 9.5, in the infrared.Comment: 4 pages, 2 figures, Revtex; revised version accepted for publication in Physical Review Letter

    Field-free deterministic ultra fast creation of skyrmions by spin orbit torques

    Full text link
    Magnetic skyrmions are currently the most promising option to realize current-driven magnetic shift registers. A variety of concepts to create skyrmions were proposed and demonstrated. However, none of the reported experiments show controlled creation of single skyrmions using integrated designs. Here, we demonstrate that skyrmions can be generated deterministically on subnanosecond timescales in magnetic racetracks at artificial or natural defects using spin orbit torque (SOT) pulses. The mechanism is largely similar to SOT-induced switching of uniformly magnetized elements, but due to the effect of the Dzyaloshinskii-Moriya interaction (DMI), external fields are not required. Our observations provide a simple and reliable means for skyrmion writing that can be readily integrated into racetrack devices

    Molecular dynamics of a short range ordered smectic phase nanoconfined into porous silicon

    Get PDF
    4-n-octyl-4-cyanobiphenyl (8CB) has been recently shown to display an unusual sequence of phases when confined into porous silicon (PSi). The gradual increase of oriented short-range smectic (SRS) correlations in place of a phase transition has been interpreted as a consequence of the anisotropic quenched disorder induced by confinement in PSi. Combining two quasielastic neutron scattering experiments with complementary energy resolutions, we present the first investigation of the individual molecular dynamics of this system. A large reduction of the molecular dynamics is observed in the confined liquid phase, as a direct consequence of the dynamical boundary conditions imposed by the confinement. Temperature fixed window scans (FWS) reveal a continuous 'glass-like' reduction of the molecular dynamics of the confined liquid and SRS phases on cooling down to 250 K, where a solid-like behavior is finally reached by a two steps crystallization process

    Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures

    Get PDF
    Quiescence is the most common and, arguably, most poorly understood cell cycle state. This is in part because pure populations of quiescent cells are typically difficult to isolate. We report the isolation and characterization of quiescent and nonquiescent cells from stationary-phase (SP) yeast cultures by density-gradient centrifugation. Quiescent cells are dense, unbudded daughter cells formed after glucose exhaustion. They synchronously reenter the mitotic cell cycle, suggesting that they are in a G0 state. Nonquiescent cells are less dense, heterogeneous, and composed of replicatively older, asynchronous cells that rapidly lose the ability to reproduce. Microscopic and flow cytometric analysis revealed that nonquiescent cells accumulate more reactive oxygen species than quiescent cells, and over 21 d, about half exhibit signs of apoptosis and necrosis. The ability to isolate both quiescent and nonquiescent yeast cells from SP cultures provides a novel, tractable experimental system for studies of quiescence, chronological and replicative aging, apoptosis, and the cell cycle

    Analyticity and Minimality of Nonperturbative Contributions in Perturbative region for αˉs\bar\alpha_s

    Full text link
    It is shown, that the possibility of a freezing of QCD running coupling constant at zero in the approach with "forced analyticity" can not be in accord with Schwinger-Dyson equation for gluon propagator. We propose to add to the analytic expression the well-known infrared singular term 1/q21/q^2 as well as pole term corresponding to "excited gluon". With this example we formulate the principle of minimality of nonperturbative contributions in perturbative (ultraviolet) region, which allows us to fix ambiguities in introduction of nonperturbative terms and maintain the finiteness of the gluon condensate. As a result we obtain estimates of the gluon condensate, which quite agree with existing data. The nonzero effective mass of the "excited gluon" leads also to some interesting qualitative consequences.Comment: 11 pages, LATEX, 1 Table (calculation of gluon condensate corrected, Table extended

    Skyrmion Hall Effect Revealed by Direct Time-Resolved X-Ray Microscopy

    Full text link
    Magnetic skyrmions are highly promising candidates for future spintronic applications such as skyrmion racetrack memories and logic devices. They exhibit exotic and complex dynamics governed by topology and are less influenced by defects, such as edge roughness, than conventionally used domain walls. In particular, their finite topological charge leads to a predicted "skyrmion Hall effect", in which current-driven skyrmions acquire a transverse velocity component analogous to charged particles in the conventional Hall effect. Here, we present nanoscale pump-probe imaging that for the first time reveals the real-time dynamics of skyrmions driven by current-induced spin orbit torque (SOT). We find that skyrmions move at a well-defined angle {\Theta}_{SH} that can exceed 30{\deg} with respect to the current flow, but in contrast to theoretical expectations, {\Theta}_{SH} increases linearly with velocity up to at least 100 m/s. We explain our observation based on internal mode excitations in combination with a field-like SOT, showing that one must go beyond the usual rigid skyrmion description to unravel the dynamics.Comment: pdf document arxiv_v1.1. 24 pages (incl. 9 figures and supplementary information
    corecore