1,287 research outputs found

    The Weathering Of Placer Gold And The Quaternary Geology Of Valdez Creek, Clearwater Mountains, Alaska

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 1995Placer gold grains collected from six paleochannels in the Valdez Creek drainage, south-central Alaska, were deposited during successive interglacial/interstadial intervals since the mid-Early Pleistocene. Statistical analysis of grain size, shape, grain surface characteristics, and the gold content of the interior and exterior of the gold grains determined by electron microprobe analysis demonstrates that the grains were affected by both mechanical and chemical weathering, and that the weathering increased with time. Etch pits, observed under a scanning electron microscope, are a ubiquitous feature of the grain surfaces. Grain surfaces average 26.7% richer in gold than the interior of the grains. The gold content of the surface of the grains increases with age. No high gold fineness rims were observed in cross section on the grains. This evidence indicates that the gold grains experienced corrosion. <p

    A simple parameter-free one-center model potential for an effective one-electron description of molecular hydrogen

    Full text link
    For the description of an H2 molecule an effective one-electron model potential is proposed which is fully determined by the exact ionization potential of the H2 molecule. In order to test the model potential and examine its properties it is employed to determine excitation energies, transition moments, and oscillator strengths in a range of the internuclear distances, 0.8 < R < 2.5 a.u. In addition, it is used as a description of an H2 target in calculations of the cross sections for photoionization and for partial excitation in collisions with singly-charged ions. The comparison of the results obtained with the model potential with literature data for H2 molecules yields a good agreement and encourages therefore an extended usage of the potential in various other applications or in order to consider the importance of two-electron and anisotropy effects.Comment: 8 pages, 6 figure

    The Existence of God: A Debate

    Get PDF
    https://digitalcommons.acu.edu/crs_books/1573/thumbnail.jp

    A Calculus of Bounded Capacities

    No full text
    Resource control has attracted increasing interest in foundational research on distributed systems. This paper focuses on space control and develops an analysis of space usage in the context of an ambient-like calculus with bounded capacities and weighed processes, where migration and activation require space. A type system complements the dynamics of the calculus by providing static guarantees that the intended capacity bounds are preserved throughout the computation

    Heat kernel of integrable billiards in a magnetic field

    Full text link
    We present analytical methods to calculate the magnetic response of non-interacting electrons constrained to a domain with boundaries and submitted to a uniform magnetic field. Two different methods of calculation are considered - one involving the large energy asymptotic expansion of the resolvent (Stewartson-Waechter method) is applicable to the case of separable systems, and another based on the small time asymptotic behaviour of the heat kernel (Balian-Bloch method). Both methods are in agreement with each other but differ from the result obtained previously by Robnik. Finally, the Balian-Bloch multiple scattering expansion is studied and the extension of our results to other geometries is discussed.Comment: 13 pages, Revte

    On the nature of continuous physical quantities in classical and quantum mechanics

    Get PDF
    Within the traditional Hilbert space formalism of quantum mechanics, it is not possible to describe a particle as possessing, simultaneously, a sharp position value and a sharp momentum value. Is it possible, though, to describe a particle as possessing just a sharp position value (or just a sharp momentum value)? Some, such as Teller (Journal of Philosophy, 1979), have thought that the answer to this question is No -- that the status of individual continuous quantities is very different in quantum mechanics than in classical mechanics. On the contrary, I shall show that the same subtle issues arise with respect to continuous quantities in classical and quantum mechanics; and that it is, after all, possible to describe a particle as possessing a sharp position value without altering the standard formalism of quantum mechanics.Comment: 26 pages, LaTe

    Fine-structure constant variability, equivalence principle and cosmology

    Full text link
    It has been widely believed that variability of the fine-structure constant alpha would imply detectable violations of the weak equivalence principle. This belief is not justified in general. It is put to rest here in the context of the general framework for alpha variability [J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982)] in which the exponent of a scalar field plays the role of the permittivity and inverse permeability of the vacuum. The coupling of particles to the scalar field is necessarily such that the anomalous force acting on a charged particle by virtue of its mass's dependence on the scalar field is cancelled by terms modifying the usual Coulomb force. As a consequence a particle's acceleration in external fields depends only on its charge to mass ratio, in accordance with the principle. And the center of mass acceleration of a composite object can be proved to be independent of the object's internal constitution, as the weak equivalence principle requires. Likewise the widely employed assumption that the Coulomb energy of matter is the principal source of the scalar field proves wrong; Coulomb energy effectively cancels out in the continuum description of the scalar field's dynamics. This cancellation resolves a cosmological conundrum: with Coulomb energy as source of the scalar field, the framework would predict a decrease of alpha with cosmological expansion, whereas an increase is claimed to be observed. Because of the said cancellation, magnetic energy of cosmological baryonic matter is the main source of the scalar field. Consequently the expansion is accompanied by an increase in alpha; for reasonable values of the framework's sole parameter, this occurs at a rate consistent with the observers' claims.Comment: RevTeX-4, 22 pages, no figures, added a section on caveats as well as several new references with discussion of them in body. To appear in Phys. Rev.

    The Origin of Degeneracies and Crossings in the 1d Hubbard Model

    Get PDF
    The paper is devoted to the connection between integrability of a finite quantum system and degeneracies of its energy levels. In particular, we analyze in detail the energy spectra of finite Hubbard chains. Heilmann and Lieb demonstrated that in these systems there are crossings of levels of the same parameter independent symmetry. We show that this apparent violation of the Wigner-von Neumann noncrossing rule follows directly from the existence of nontrivial conservation laws and is a characteristic signature of quantum integrability. The energy spectra of Hubbard chains display many instances of permanent (at all values of the coupling) twofold degeneracies that cannot be explained by parameter independent symmetries. We relate these degeneracies to the different transformation properties of the conserved currents under spatial reflections and the particle-hole transformation and estimate the fraction of doubly degenerate states. We also discuss multiply degenerate eigenstates of the Hubbard Hamiltonian. The wave functions of many of these states do not depend on the coupling, which suggests the existence of an additional parameter independent symmetry.Comment: 25 pages, 12 figure
    • 

    corecore