1,137 research outputs found

    Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    Get PDF
    A rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for a curved orthogrid panel typical of launch vehicle skin structures. Several test article configurations were produced by adding component equipment of differing weights to the flight-like vehicle panel. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was employed to describe the assumed correlation of phased input sound pressures across the energized panel. This application demonstrates the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software modules developed for the RPTF method can be easily adapted for quick replacement of the diffuse acoustic field with other pressure field models; for example a turbulent boundary layer (TBL) model suitable for vehicle ascent. Wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this type of environment. Finally, component vibration environments for design were developed from the measured and predicted responses and compared with those derived from traditional techniques such as Barrett scaling methods for unloaded and component-loaded panels

    Potent and Selective Peptide-based Inhibition of the G Protein Gαq

    Get PDF
    In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gα q binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gα q within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gα q in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gα q A representative peptide was specific for active Gα q because it did not bind inactive Gα q or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ 1 γ 2 In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gα q ; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gα q in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gα q -dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gα q in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gα q in cells

    Advances in surface EMG signal simulation with analytical and numerical descriptions of the volume conductor

    Get PDF
    Surface electromyographic (EMG) signal modeling is important for signal interpretation, testing of processing algorithms, detection system design, and didactic purposes. Various surface EMG signal models have been proposed in the literature. In this study we focus on 1) the proposal of a method for modeling surface EMG signals by either analytical or numerical descriptions of the volume conductor for space-invariant systems, and 2) the development of advanced models of the volume conductor by numerical approaches, accurately describing not only the volume conductor geometry, as mainly done in the past, but also the conductivity tensor of the muscle tissue. For volume conductors that are space-invariant in the direction of source propagation, the surface potentials generated by any source can be computed by one-dimensional convolutions, once the volume conductor transfer function is derived (analytically or numerically). Conversely, more complex volume conductors require a complete numerical approach. In a numerical approach, the conductivity tensor of the muscle tissue should be matched with the fiber orientation. In some cases (e.g., multi-pinnate muscles) accurate description of the conductivity tensor may be very complex. A method for relating the conductivity tensor of the muscle tissue, to be used in a numerical approach, to the curve describing the muscle fibers is presented and applied to representatively investigate a bi-pinnate muscle with rectilinear and curvilinear fibers. The study thus propose an approach for surface EMG signal simulation in space invariant systems as well as new models of the volume conductor using numerical methods

    LOGISTICS IN CONTESTED ENVIRONMENTS

    Get PDF
    This report examines the transport and delivery of logistics in contested environments within the context of great-power competition (GPC). Across the Department of Defense (DOD), it is believed that GPC will strain our current supply lines beyond their capacity to maintain required warfighting capability. Current DOD efforts are underway to determine an appropriate range of platforms, platform quantities, and delivery tactics to meet the projected logistics demand in future conflicts. This report explores the effectiveness of various platforms and delivery methods through analysis in developed survivability, circulation, and network optimization models. Among other factors, platforms are discriminated by their radar cross-section (RCS), noise level, speed, cargo capacity, and self-defense capability. To maximize supply delivered and minimize the cost of losses, the results of this analysis indicate preference for utilization of well-defended convoys on supply routes where bulk supply is appropriate and smaller, and widely dispersed assets on shorter, more contested routes with less demand. Sensitivity analysis on these results indicates system survivability can be improved by applying RCS and noise-reduction measures to logistics assets.Director, Warfare Integration (OPNAV N9I)Major, Israel Defence ForcesCivilian, Singapore Technologies Engineering Ltd, SingaporeCommander, Republic of Singapore NavyCommander, United States NavyCaptain, Singapore ArmyLieutenant, United States NavyLieutenant, United States NavyMajor, Republic of Singapore Air ForceCaptain, United States Marine CorpsLieutenant, United States NavyLieutenant, United States NavyLieutenant, United States NavyLieutenant, United States NavyLieutenant, United States NavyCaptain, Singapore ArmyLieutenant Junior Grade, United States NavyCaptain, Singapore ArmyLieutenant Colonel, Republic of Singapore Air ForceApproved for public release. distribution is unlimite

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    First Measurement of the Branching Fraction of the Decay psi(2S) --> tau tau

    Full text link
    The branching fraction of the psi(2S) decay into tau pair has been measured for the first time using the BES detector at the Beijing Electron-Positron Collider. The result is Bττ=(2.71±0.43±0.55)×10−3B_{\tau\tau}=(2.71\pm 0.43 \pm 0.55) \times 10^{-3}, where the first error is statistical and the second is systematic. This value, along with those for the branching fractions into e+e- and mu+mu of this resonance, satisfy well the relation predicted by the sequential lepton hypothesis. Combining all these values with the leptonic width of the resonance the total width of the psi(2S) is determined to be (252±37)(252 \pm 37) keV.Comment: 9 pages, 2 figure

    Revisiting histories of anti-racist thought and activism

    Get PDF
    This piece reconsiders histories of anti-racist thought and practice, including the linkages between anti-racisms and other traditions of liberatory thought. We argue that anti-racism should be understood as a strand in radical thought linking internationalism, institutional critique and street activism, in the process interfeeding with other social movements. The traditions of anti-racist thought discussed in this special issue exemplify these cross-cutting influences

    Optimised Anaesthesia to Reduce Post Operative Cognitive Decline (POCD) in Older Patients Undergoing Elective Surgery, a Randomised Controlled Trial

    Get PDF
    Background The study determined the one year incidence of post operative cognitive decline (POCD) and evaluated the effectiveness of an intra-operative anaesthetic intervention in reducing post-operative cognitive impairment in older adults (over 60 years of age) undergoing elective orthopaedic or abdominal surgery. Methods and Trial Design The design was a prospective cohort study with a nested randomised, controlled intervention trial, using intra-operative BiSpectral index and cerebral oxygen saturation monitoring to enable optimisation of anaesthesia depth and cerebral oxygen saturation in older adults undergoing surgery. Results In the 52 week prospective cohort study (192 surgical patients and 138 controls), mild (?2 = 17.9 p<0.0001), moderate (?2 = 7.8 p = 0.005) and severe (?2 = 5.1 p = 0.02) POCD were all significantly higher after 52 weeks in the surgical patients than among the age matched controls. In the nested RCT, 81 patients were randomized, 73 contributing to the data analysis (34 intervention, 39 control). In the intervention group mild POCD was significantly reduced at 1, 12 and 52 weeks (Fisher’s Exact Test p = 0.018, ?2 = 5.1 p = 0.02 and ?2 = 5.9 p = 0.015), and moderate POCD was reduced at 1 and 52 weeks (?2 = 4.4 p = 0·037 and ?2 = 5.4 p = 0.02). In addition there was significant improvement in reaction time at all time-points (Vigilance Reaction Time MWU Z = ?2.1 p = 0.03, MWU Z = ?2.7 p = 0.004, MWU Z = ?3.0 p = 0.005), in MMSE at one and 52 weeks (MWU Z = ?2.9 p = 0.003, MWU Z = ?3.3 p = 0.001), and in executive function at 12 and 52 weeks (Trail Making MWU Z = ?2.4 p = .0.018, MWU Z = ?2.4 p = 0.019). Conclusion POCD is common and persistent in older adults following surgery. The results of the nested RCT indicate the potential benefits of intra-operative monitoring of anaesthetic depth and cerebral oxygenation as a pragmatic intervention to reduce post-operative cognitive impairment

    Study of the P-wave charmonium state \chi_{cJ} in \psi(2S) decays

    Full text link
    The processes ψ(2S)→γπ+π−\psi(2S)\to \gamma \pi^+ \pi^-, γK+K−\gamma K^+ K^- and γppˉ\gamma p \bar{p} have been studied using a sample of 3.7×1063.7 \times 10^6 produced ψ(2S)\psi(2S) decays. We determine the total width of the χc0\chi_{c0} to be Γχc0tot=14.3±2.0±3.0\Gamma^{tot}_{\chi_{c0}} = 14.3\pm 2.0\pm 3.0 MeV. We present the first measurement of the branching fraction B(χc0→ppˉ)=(16.3±4.4±5.4)×10−5B(\chi_{c0} \to p \bar{p}) = (16.3 \pm 4.4 \pm 5.4)\times 10^{-5}, where the first error is statistical and the second one systematic. Branching fractions of χc0,2→π+π−\chi_{c0,2} \to \pi^+ \pi^- and K+K−K^+ K^- are also reported.Comment: 10 pages, revtex, 3 figures, 2 table
    • …
    corecore