111 research outputs found

    Enhanced Fusion-Evaporation Cross Sections in Neutron-Rich 132^{132}Sn on 64^{64}Ni

    Full text link
    Evaporation residue cross sections have been measured with neutron-rich radioactive 132^{132}Sn beams on 64^{64}Ni in the vicinity of the Coulomb barrier. The average beam intensity was 2×1042\times 10^{4} particles per second and the smallest cross section measured was less than 5 mb. Large subbarrier fusion enhancement was observed. Coupled-channels calculations taking into account inelastic excitation and neutron transfer underpredict the measured cross sections below the barrier.Comment: 4 pages including 1 table and 3 figure

    Photonuclear fission with quasimonoenergetic electron beams from laser wakefields

    Full text link
    Recent advancements in laser wakefield accelerators have resulted in the generation of low divergence, hundred MeV, quasimonoenergetic electron beams. The bremsstrahlung produced by these highly energetic electrons in heavy converters includes a large number of MeV γγ rays that have been utilized to induce photofission in natural uranium. Analysis of the measured delayed γγ emission demonstrates production of greater than 3×1053×105 fission events per joule of laser energy, which is more than an order of magnitude greater than that previously achieved. Monte Carlo simulations model the generated bremsstrahlung spectrum and compare photofission yields as a function of target depth and incident electron energy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87815/2/231107_1.pd

    Evidence for Thermal Equilibration in Multifragmentation Reactions probed with Bremsstrahlung Photons

    Full text link
    The production of nuclear bremsstrahlung photons (Eγ>_{\gamma}> 30 MeV) has been studied in inclusive and exclusive measurements in four heavy-ion reactions at 60{\it A} MeV. The measured photon spectra, angular distributions and multiplicities indicate that a significant part of the hard-photons are emitted in secondary nucleon-nucleon collisions from a thermally equilibrated system. The observation of the thermal component in multi-fragment 36^{36}Ar+197^{197}Au reactions suggests that the breakup of the thermalized source produced in this system occurs on a rather long time-scale.Comment: Revised version, accepted for publication in Physical Review Letters. 4 pages, 4 fig

    Thermal bremsstrahlung probing the thermodynamical state of multifragmenting systems

    Full text link
    Inclusive and exclusive hard-photon (Eγ>_\gamma > 30 MeV) production in five different heavy-ion reactions (36^{36}Ar+197^{197}Au, 107^{107}Ag, 58^{58}Ni, 12^{12}C at 60{\it A} MeV and 129^{129}Xe+120^{120}Sn at 50{\it A} MeV) has been studied coupling the TAPS photon spectrometer with several charged-particle multidetectors covering more than 80% of 4π\pi. The measured spectra, slope parameters and source velocities as well as their target-dependence, confirm the existence of thermal bremsstrahlung emission from secondary nucleon-nucleon collisions that accounts for roughly 20% of the total hard-photon yield. The thermal slopes are a direct measure of the temperature of the excited nuclear systems produced during the reaction.Comment: 4 pages, 3 figures, Proceedings CRIS 2000, 3rd Catania Relativistic Ion Studies, "Phase Transitions in Strong Interactions: Status and Perspectives", Acicastello, Italy, May 22-26, 2000 (to be published in Nuc. Phys. A

    Hadronic Excitation of the Giant Dipole Resonance in 208-Pb and 40-Ca at E_p = 200 MeV

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Reactions of a Be-10 beam on proton and deuteron targets

    Get PDF
    The extraction of detailed nuclear structure information from transfer reactions requires reliable, well-normalized data as well as optical potentials and a theoretical framework demonstrated to work well in the relevant mass and beam energy ranges. It is rare that the theoretical ingredients can be tested well for exotic nuclei owing to the paucity of data. The halo nucleus Be-11 has been examined through the 10Be(d,p) reaction in inverse kinematics at equivalent deuteron energies of 12,15,18, and 21.4 MeV. Elastic scattering of Be-10 on protons was used to select optical potentials for the analysis of the transfer data. Additionally, data from the elastic and inelastic scattering of Be-10 on deuterons was used to fit optical potentials at the four measured energies. Transfers to the two bound states and the first resonance in Be-11 were analyzed using the Finite Range ADiabatic Wave Approximation (FR-ADWA). Consistent values of the spectroscopic factor of both the ground and first excited states were extracted from the four measurements, with average values of 0.71(5) and 0.62(4) respectively. The calculations for transfer to the first resonance were found to be sensitive to the size of the energy bin used and therefore could not be used to extract a spectroscopic factor.Comment: 16 Pages, 10 figure

    Recent direct reaction experimental studies with radioactive tin beams

    Get PDF
    Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z=50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, N=82, and neutron-deficient, N=50, regions. Here we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in 131Sn from across the N=82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient 106,108Sn. In both cases, measurements of gamma rays in coincidence with charged particles proved to be invaluable.Comment: 11 pages, 5 figures, Zakopane Conference on Nuclear Physics "Extremes of the Nuclear Landscape", Zakopane, Poland, August 31 - September 7, 201

    Precision measurement of 65^{65}Zn electron-capture decays with the KDK coincidence setup

    Full text link
    65^{65}Zn is a common calibration source, moreover used as a radioactive tracer in medical and biological studies. In many cases, γ\gamma-spectroscopy is a preferred method of 65^{65}Zn standardization, which relies directly on the branching ratio of Jπ(65Zn)=5/2−→Jπ(65Cu)=5/2−J \pi (^{65}\text{Zn} ) = 5/2^- \rightarrow J \pi (^{65}\text{Cu}) = 5/2^- via electron capture (EC*). We measure the relative intensity of this branch to that proceeding directly to the ground state (EC0^0) using a novel coincidence technique, finding IEC0/IEC*=0.9684±0.0018I_{\text{EC}^0}/I_{\text{EC*}} = 0.9684 \pm 0.0018. Re-evaluating the decay scheme of 65^{65}Zn by adopting the commonly evaluated branching ratio of Iβ+=1.4271(7)%I_{\beta^+}= 1.4271(7)\% we obtain IEC*=(50.08±0.06)%I_{\text{EC*}} = (50.08 \pm 0.06)\%, and I_\text{EC^0} = (48.50 \pm 0.06) \%. The associated 1115 keV gamma intensity agrees with the previously reported NNDC value, and is now accessible with a factor of ~2 increase in precision. Our re-evaluation removes reliance on the deduction of this gamma intensity from numerous measurements, some of which disagree and depend directly on total activity determination. The KDK experimental technique provides a new avenue for verification or updates to the decay scheme of 65^{65}Zn, and is applicable to other isotopes.Comment: Uses similar methodology to the 40K measurement by the KDK Collaboration (Stukel et al PRL 2023, arXiv:2211.10319; Hariasz et al PRC 2023, arXiv:2211.10343), as such there may be some similarity in figures and tex
    • …
    corecore