160 research outputs found

    ‘No Time to be Lost!’: Ethical Considerations on Consent for Inclusion in Emergency Pharmacological Research in Severe Traumatic Brain Injury in the European Union

    Get PDF
    Severe Traumatic Brain Injury (TBI) remains a major cause of death and disability afflicting mostly young adult males and elderly people, resulting in high economic costs to society. Therapeutic approaches focus on reducing the risk on secondary brain injury. Specific ethical issues pertaining in clinical testing of pharmacological neuroprotective agents in TBI include the emergency nature of the research, the incapacity of the patients to informed consent before inclusion, short therapeutic time windows, and a risk-benefit ratio based on concept that in relation to the severity of the trauma, significant adverse side effects may be acceptable for possible beneficial treatments. Randomized controlled phase III trials investigating the safety and efficacy of agents in TBI with promising benefit, conducted in acute emergency situations with short therapeutic time windows, should allow randomization under deferred consent or waiver of consent. Making progress in knowledge of treatment in acute neurological and other intensive care conditions is only possible if national regulations and legislations allow waiver of consent or deferred consent for clinical trials

    Involvement of the endocannabinoid system in the physiological response to transient common carotid artery occlusion and reperfusion

    Get PDF
    Background: The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) may trigger a physiological response in an attempt to preserve tissue and function integrity. There are several candidate molecules among which the endocannabinoid system (ECS) and/or peroxisome-proliferator activated receptor-alpha (PPAR-alpha) may play a role in modulating oxidative stress and inflammation. The aims of the present study are to evaluate whether the ECS, the enzyme cyclooxygenase-2 (COX-2) and PPAR-alpha are involved during BCCAO/R in rat brain, and to identify possible markers of the ongoing BCCAO/R-induced challenge in plasma. Methods: Adult Wistar rats underwent BCCAO/R with 30 min hypoperfusion followed by 60 min reperfusion. The frontal and temporal-occipital cortices and plasma were analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) to determine concentrations of endocannabinoids (eCBs) and related molecules behaving as ligands of PPAR-alpha, and of oxidative-stress markers such as lipoperoxides, while Western Blot and immunohistochemistry were used to study protein expression of cannabinoid receptors, COX-2 and PPAR-alpha. Unpaired Student's t-test was used to evaluate statistical differences between groups. Results: The acute BCCAO/R procedure is followed by increased brain tissue levels of the eCBs 2-arachidonoylglycerol and anandamide, palmitoylethanolamide, an avid ligand of PPAR-alpha, lipoperoxides, type 1 (CB1) and type 2 (CB2) cannabinoid receptors, and COX-2, and decreased brain tissue concentrations of docosahexaenoic acid (DHA), one of the major targets of lipid peroxidation. In plasma, increased levels of anandamide and lipoperoxides were observed. Conclusions: The BCCAO/R stimulated early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation. The observed variations suggest that the positive modulation of the ECS and the increase of proinflammatory substances are directly correlated events. Increase of plasmatic levels of anandamide and lipoperoxides further suggests that dysregulation of these molecules may be taken as an indicator of an ongoing hypoperfusion/reperfusion challenge

    Cognition based bTBI mechanistic criteria; a tool for preventive and therapeutic innovations

    Get PDF
    Blast-induced traumatic brain injury has been associated with neurodegenerative and neuropsychiatric disorders. To date, although damage due to oxidative stress appears to be important, the specific mechanistic causes of such disorders remain elusive. Here, to determine the mechanical variables governing the tissue damage eventually cascading into cognitive deficits, we performed a study on the mechanics of rat brain under blast conditions. To this end, experiments were carried out to analyse and correlate post-injury oxidative stress distribution with cognitive deficits on a live rat exposed to blast. A computational model of the rat head was developed from imaging data and validated against in vivo brain displacement measurements. The blast event was reconstructed in silico to provide mechanistic thresholds that best correlate with cognitive damage at the regional neuronal tissue level, irrespectively of the shape or size of the brain tissue types. This approach was leveraged on a human head model where the prediction of cognitive deficits was shown to correlate with literature findings. The mechanistic insights from this work were finally used to propose a novel helmet design roadmap and potential avenues for therapeutic innovations against blast traumatic brain injury

    Overexpression of Mitochondrial Uncoupling Protein 2 Inhibits Inflammatory Cytokines and Activates Cell Survival Factors after Cerebral Ischemia

    Get PDF
    Mitochondria play a critical role in cell survival and death after cerebral ischemia. Uncoupling proteins (UCPs) are inner mitochondrial membrane proteins that disperse the mitochondrial proton gradient by translocating H+ across the inner membrane in order to stabilize the inner mitochondrial membrane potential (ΔΨm) and reduce the formation of reactive oxygen species. Previous studies have demonstrated that mice transgenically overexpressing UCP2 (UCP2 Tg) in the brain are protected from cerebral ischemia, traumatic brain injury and epileptic challenges. This study seeks to clarify the mechanisms responsible for neuroprotection after transient focal ischemia. Our hypothesis is that UCP2 is neuroprotective by suppressing innate inflammation and regulating cell cycle mediators. PCR gene arrays and protein arrays were used to determine mechanisms of damage and protection after transient focal ischemia. Our results showed that ischemia increased the expression of inflammatory genes and suppressed the expression of anti-apoptotic and cell cycle genes. Overexpression of UCP2 blunted the ischemia-induced increase in IL-6 and decrease in Bcl2. Further, UCP2 increased the expression of cell cycle genes and protein levels of phospho-AKT, PKC and MEK after ischemia. It is concluded that the neuroprotective effects of UCP2 against ischemic brain injury are associated with inhibition of pro-inflammatory cytokines and activation of cell survival factors

    Altered striatal endocannabinoid signaling in a transgenic mouse model of spinocerebellar ataxia type-3

    Get PDF
    Spinocerebellar ataxia type-3 (SCA-3) is the most prevalent autosomal dominant inherited ataxia. We recently found that the endocannabinoid system is altered in the post-mortem cerebellum of SCA-3 patients, and similar results were also found in the cerebellar and brainstem nuclei of a SCA-3 transgenic mouse model. Given that the neuropathology of SCA-3 is not restricted to these two brain regions but rather, it is also evident in other structures (e.g., the basal ganglia), we studied the possible changes to endocannabinoid signaling in the striatum of these transgenic mice. SCA-3 mutant mice suffer defects in motor coordination, balance and they have an abnormal gait, reflecting a cerebellar/brainstem neuropathology. However, they also show dystonia-like behavior (limb clasping) that may be related to the malfunction/deterioration of specific neurons in the striatum. Indeed, we found a loss of striatal projecting neurons in SCA-3 mutant mice, accompanied by a reduction in glial glutamate transporters that could potentially aggravate excitotoxic damage. In terms of endocannabinoid signaling, no changes in CB2 receptors were evident, yet an important reduction in CB1 receptors was detected by qPCR and immunostaining. The reduction in CB1 receptors was presumed to occur in striatal afferent and efferent neurons, also potentially aggravating excitotoxicity. We also measured the endocannabinoid lipids in the striatum and despite a marked increase in the FAAH enzyme in this area, no overall changes in these lipids were found. Collectively, these studies confirm that the striatal endocannabinoid system is altered in SCA-3 mutant mice, adding to the equivalent changes found in other strongly affected CNS structures in this type of ataxia (i.e.: the cerebellum and brainstem). These data open the way to search for drugs that might correct these changes.Funding: This study has been supported: (i) by MICINN (SAF2009-11847 and SAF2015-68580-C2-1-R), CIBERNED (CB06/05/0089) and “Fundación Eugenio Rodríguez Pascual”, to JFR; (ii) by the Research and Education Component of the Advancing a Healthier Wisconsin Endowment at the Medical College of Wisconsin, to CJH; and (iii) by Fundação para a Ciência e Tecnologia through the project POCI-01-0145-FEDER-016818 (PTDC/NEU-NMC/3648/2014) and co-financed by the Portuguese North Regional Operational Program (ON.2 – O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), to PM. Carmen Rodríguez-Cueto was a predoctoral fellow supported by FPI Program-Ministry of Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Experimental traumatic brain injury

    Get PDF
    Traumatic brain injury, a leading cause of death and disability, is a result of an outside force causing mechanical disruption of brain tissue and delayed pathogenic events which collectively exacerbate the injury. These pathogenic injury processes are poorly understood and accordingly no effective neuroprotective treatment is available so far. Experimental models are essential for further clarification of the highly complex pathology of traumatic brain injury towards the development of novel treatments. Among the rodent models of traumatic brain injury the most commonly used are the weight-drop, the fluid percussion, and the cortical contusion injury models. As the entire spectrum of events that might occur in traumatic brain injury cannot be covered by one single rodent model, the design and choice of a specific model represents a major challenge for neuroscientists. This review summarizes and evaluates the strengths and weaknesses of the currently available rodent models for traumatic brain injury

    Age-Related Comparisons of Evolution of the Inflammatory Response After Intracerebral Hemorrhage in Rats

    Get PDF
    In the hours to days after intracerebral hemorrhage (ICH), there is an inflammatory response within the brain characterized by the infiltration of peripheral neutrophils and macrophages and the activation of brain-resident microglia and astrocytes. Despite the strong correlation of aging and ICH incidence, and increasing information about cellular responses, little is known about the temporal- and age-related molecular responses of the brain after ICH. Here, we monitored a panel of 27 genes at 6 h and 1, 3, and 7 days after ICH was induced by injecting collagenase into the striatum of young adult and aged rats. Several molecules (CR3, TLR2, TLR4, IL-1β, TNFα, iNOS, IL-6) were selected to reflect the classical activation of innate immune cells (macrophages, microglia) and the potential to exacerbate inflammation and damage brain cells. Most of the others are associated with the resolution of innate inflammation, alternative pathways of macrophage/microglial activation, and the repair phase after acute injury (TGFβ, IL-1ra, IL-1r2, IL-4, IL-13, IL-4Rα, IL-13Rα1, IL-13Rα2, MRC1, ARG1, CD163, CCL22). In young animals, the up-regulation of 26 in 27 genes (not IL-4) was detected within the first week. Differences in timing or levels between young and aged animals were detected for 18 of 27 genes examined (TLR2, GFAP, IL-1β, IL-1ra, IL-1r2, iNOS, IL-6, TGFβ, MMP9, MMP12, IL-13, IL-4Rα, IL-13Rα1, IL-13Rα2, MRC1, ARG1, CD163, CCL22), with a generally less pronounced or delayed inflammatory response in the aged animals. Importantly, within this complex response to experimental ICH, the induction of pro-inflammatory, potentially harmful mediators often coincided with resolving and beneficial molecules

    Distinct cytokine patterns may regulate the severity of neonatal asphyxia

    Get PDF
    Abstract Background Neuroinflammation and a systemic inflammatory reaction are important features of perinatal asphyxia. Neuroinflammation may have dual aspects being a hindrance, but also a significant help in the recovery of the CNS. We aimed to assess intracellular cytokine levels of T-lymphocytes and plasma cytokine levels in moderate and severe asphyxia in order to identify players of the inflammatory response that may influence patient outcome. Methods We analyzed the data of 28 term neonates requiring moderate systemic hypothermia in a single-center observational study. Blood samples were collected between 3 and 6 h of life, at 24 h, 72 h, 1 week, and 1 month of life. Neonates were divided into a moderate (n = 17) and a severe (n = 11) group based on neuroradiological and amplitude-integrated EEG characteristics. Peripheral blood mononuclear cells were assessed with flow cytometry. Cytokine plasma levels were measured using Bioplex immunoassays. Components of the kynurenine pathway were assessed by high-performance liquid chromatography. Results The prevalence and extravasation of IL-1b + CD4 cells were higher in severe than in moderate asphyxia at 6 h. Based on Receiver operator curve analysis, the assessment of the prevalence of CD4+ IL-1β+ and CD4+ IL-1β+ CD49d+ cells at 6 h appears to be able to predict the severity of the insult at an early stage in asphyxia. Intracellular levels of TNF-α in CD4 cells were increased at all time points compared to 6 h in both groups. At 1 month, intracellular levels of TNF-α were higher in the severe group. Plasma IL-6 levels were higher at 1 week in the severe group and decreased by 1 month in the moderate group. Intracellular levels of IL-6 peaked at 24 h in both groups. Intracellular TGF-β levels were increased from 24 h onwards in the moderate group. Conclusions IL-1β and IL-6 appear to play a key role in the early events of the inflammatory response, while TNF-α seems to be responsible for prolonged neuroinflammation, potentially contributing to a worse outcome. The assessment of the prevalence of CD4+ IL-1β+ and CD4+ IL-1β+ CD49d+ cells at 6 h appears to be able to predict the severity of the insult at an early stage in asphyxia

    Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation

    Get PDF
    Background: The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body: We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions: As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.Frances Corrigan, Kimberley A. Mander, Anna V. Leonard and Robert Vin
    corecore