134 research outputs found

    Dispersal of thermophilic beetles across the intercontinental Arctic forest belt during the early Eocene

    Get PDF
    Abstract Massive biotic change occurred during the Eocene as the climate shifted from warm and equable to seasonal and latitudinally stratified. Mild winter temperatures across Arctic intercontinental land bridges permitted dispersal of frost-intolerant groups until the Eocene-Oligocene boundary, while trans-Arctic dispersal in thermophilic groups may have been limited to the early Eocene, especially during short-lived hyperthermals. Some of these lineages are now disjunct between continents of the northern hemisphere. Although Eocene climate change may have been one of the most important drivers of these ancient patterns in modern animal and plant distributions, its particular events are rarely implicated or correlated with group-specific climatic requirements. Here we explored the climatic and geological drivers of a particularly striking Neotropical-Oriental disjunct distribution in the rove beetle Bolitogyrus, a suspected Eocene relict. We integrated evidence from Eocene fossils, distributional and climate data, paleoclimate, paleogeography, and phylogenetic divergence dating to show that intercontinental dispersal of Bolitogyrus ceased in the early Eocene, consistent with the termination of conditions required by thermophilic lineages. These results provide new insight into the poorly known and short-lived Arctic forest community of the Early Eocene and its surviving lineages

    Seismotectonics and rupture process of the MW 7.1 2011 Van reverse-faulting earthquake, eastern Turkey, and implications for hazard in regions of distributed shortening

    Get PDF
    The 2011 October 23 MW 7.1 Van earthquake in eastern Turkey caused ~600 deaths and caused widespread damage and economic loss. The seismogenic rupture was restricted to 10-25 km in depth, but aseismic surface creep, coincident with outcrop fault exposures, was observed in the hours to months after the earthquake. We combine observations from radar interferometry, seismology, geomorphology and Quaternary dating to investigate the geological slip rate and seismotectonic context of the Van earthquake, and assess the implications for continuing seismic hazard in the region. Transient post-seismic slip on the upper Van fault started immediately following the earthquake, and decayed over a period of weeks; it may not fully account for our long-term surface slip-rate estimate of ≥ 0.5 mm yr-1. Post-seismic slip on the Bostaniçi splay fault initiated several days to weeks after the main shock, and we infer that it may have followed the MW 5.9 aftershock on the 9th November. The Van earthquake shows that updip segmentation can be important in arresting seismic ruptures on dip-slip faults. Two large, shallow aftershocks show that the upper 10 km of crust can sustain significant earthquakes, and significant slip is observed to have reached the surface in the late Quaternary, so there may be a continuing seismic hazard from the upper Van fault and the associated splay. The wavelength of folding in the hanging wall of the Van fault is dominated by the structure in the upper 10 km of the crust, masking the effect of deeper seismogenic structures. Thus, models of subsurface faulting based solely on surface folding and faulting in regions of reverse faulting may underestimate the full depth extent of seismogenic structures in the region. In measuring the cumulative post-seismic offsets to anthropogenic structures, we show that Structure-from-Motion can be rapidly deployed to create snapshots of postseismic displacement.We also demonstrate the utility of declassified Corona mission imagery (1960s-1970s) for geomorphic mapping in areas where recent urbanization has concealed the geomorphic markers

    Great earthquakes in low strain rate continental interiors: An example from SE Kazakhstan

    Get PDF
    The Lepsy fault of the northern Tien Shan, SE Kazakhstan, extends E-W 120 km from the high mountains of the Dzhungarian Ala-tau, a subrange of the northern Tien Shan, into the low-lying Kazakh platform. It is an example of an active structure that connects a more rapidly deforming mountain region with an apparently stable continental region and follows a known Palaeozoic structure. Field-based and satellite observations reveal an ∼10 m vertical offset exceptionally preserved along the entire length of the fault. Geomorphic analysis and age control from radiocarbon and optically stimulated luminescence dating methods indicate that the scarp formed in the Holocene and was generated by at least two substantial earthquakes. The most recent event, dated to sometime after ∼400 years B.P., is likely to have ruptured the entire ∼120 km fault length in a Mw 7.5–8.2 earthquake. The Lepsy fault kinematics were characterized using digital elevation models and high-resolution satellite imagery, which indicate that the predominant sense of motion is reverse right lateral with a fault strike, dip, and slip vector azimuth of ∼110∘, 50∘S, and 317–343∘, respectively, which is consistent with predominant N-S shortening related to the India-Eurasia collision. In light of these observations, and because the activity of the Lepsy fault would have been hard to ascertain if it had not ruptured in the recent past, we note that the absence of known active faults within low-relief and low strain rate continental interiors does not always imply an absence of seismic hazard

    Craig Rhos-y-felin: A Welsh bluestone megalith quarry for Stonehenge

    Get PDF
    The long-distance transport of the bluestones from south Wales to Stonehenge is one of the most remarkable achievements of Neolithic societies in north-west Europe. Where precisely these stones were quarried, when they were extracted and how they were transported has long been a subject of speculation, experiment and controversy. The discovery of a megalithic bluestone quarry at Craig Rhos-y-felin in 2011 marked a turning point in this research. Subsequent excavations have provided details of the quarrying process along with direct dating evidence for the extraction of bluestone monoliths at this location, demonstrating both Neolithic and Early Bronze Age activity

    Terrace reconstruction and long profile projection: a case study from the Solent river system near Southampton, England

    Get PDF
    River terrace sequences are important frameworks for archaeological evidence and as such it is important to produce robust correlations between what are often fragmentary remnants of ancient terraces. This paper examines both conceptual and practical issues related to such correlations, using a case study from the eastern part of the former Solent River system near Southampton, England. In this region two recent terrace schemes have been constructed using different data to describe the terrace deposits: one based mainly on terrace surfaces; the other on gravel thicknesses, often not recording the terrace surface itself. The utility of each of these types of data in terrace correlation is discussed in relation to the complexity of the record, the probability of post-depositional alteration of surface sediments and comparison of straight-line projections with modern river long profiles. Correlation using age estimates is also discussed, in relation to optically-stimulated luminescence dating of sand lenses within terrace gravels in this region during the PASHCC project. It is concluded that the need for replication at single sites means that this approach has limited use for correlative purposes, although dating of sediments is important for understanding wider landscape evolution and patterns of human occupation

    Neanderthals on the Lower Danube: Middle Palaeolithic evidence in the Danube Gorges of the Balkans

    Get PDF
    The article presents evidence about the Middle Palaeolithic and Middle to Upper Palaeolithic transition interval in the karst area of the Danube Gorges in the Lower Danube Basin. We review the extant data and present new evidence from two recently investigated sites found on the Serbian side of the Danube River – Tabula Traiana and Dubočka-Kozja caves. The two sites have yielded layers dating to both the Middle and Upper Palaeolithic and have been investigated by the application of modern standards of excavation and recovery along with a suite of state-of-the-art analytical procedures. The presentation focuses on micromorphological analyses of the caves’ sediments, characterisation of cryptotephra, a suite of new radiometric dates (accelerator mass spectrometry and optically stimulated luminescence) as well as proteomics (zooarchaeology by mass spectrometry) and stable isotope data in discerning patterns of human occupation of these locales over the long term
    corecore