2,188 research outputs found

    Universal inversion formulas for recovering a function from spherical means

    Full text link
    The problem of reconstruction a function from spherical means is at the heart of several modern imaging modalities and other applications. In this paper we derive universal back-projection type reconstruction formulas for recovering a function in arbitrary dimension from averages over spheres centered on the boundary an arbitrarily shaped smooth convex domain. Provided that the unknown function is supported inside that domain, the derived formulas recover the unknown function up to an explicitly computed smoothing integral operator. For elliptical domains the integral operator is shown to vanish and hence we establish exact inversion formulas for recovering a function from spherical means centered on the boundary of elliptical domains in arbitrary dimension.Comment: [20 pages, 2 figures] Compared to the previous versions I corrected some typo

    Self-adjusting multisegment, deployable, natural circulation radiator Patent

    Get PDF
    Development and characteristics of natural circulation radiator for use with nuclear power plants installed in lunar space station

    Model Estimation Within Planning and Learning

    Get PDF
    Risk and reward are fundamental concepts in the cooperative control of unmanned systems. In this research, we focus on developing a constructive relationship between cooperative planning and learning algorithms to mitigate the learning risk, while boosting system (planner & learner) asymptotic performance and guaranteeing the safety of agent behavior. Our framework is an instance of the intelligent cooperative control architecture (iCCA) where the learner incrementally improves on the output of a baseline planner through interaction and constrained exploration. We extend previous work by extracting the embedded parameterized transition model from within the cooperative planner and making it adaptable and accessible to all iCCA modules. We empirically demonstrate the advantage of using an adaptive model over a static model and pure learning approaches in an example GridWorld problem and a UAV mission planning scenario with 200 million possibilities. Finally we discuss two extensions to our approach to handle cases where the true model can not be captured exactly through the presumed functional form.United States. Air Force Office of Scientific Research (FA9550-09-1-0522)Natural Sciences and Engineering Research Council of CanadaUSAF (FA9550-09-1-0522

    Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: carbon and energy flow contribute to the distinct biofilm growth state.

    Get PDF
    BackgroundDesulfovibrio vulgaris Hildenborough is a sulfate-reducing bacterium (SRB) that is intensively studied in the context of metal corrosion and heavy-metal bioremediation, and SRB populations are commonly observed in pipe and subsurface environments as surface-associated populations. In order to elucidate physiological changes associated with biofilm growth at both the transcript and protein level, transcriptomic and proteomic analyses were done on mature biofilm cells and compared to both batch and reactor planktonic populations. The biofilms were cultivated with lactate and sulfate in a continuously fed biofilm reactor, and compared to both batch and reactor planktonic populations.ResultsThe functional genomic analysis demonstrated that biofilm cells were different compared to planktonic cells, and the majority of altered abundances for genes and proteins were annotated as hypothetical (unknown function), energy conservation, amino acid metabolism, and signal transduction. Genes and proteins that showed similar trends in detected levels were particularly involved in energy conservation such as increases in an annotated ech hydrogenase, formate dehydrogenase, pyruvate:ferredoxin oxidoreductase, and rnf oxidoreductase, and the biofilm cells had elevated formate dehydrogenase activity. Several other hydrogenases and formate dehydrogenases also showed an increased protein level, while decreased transcript and protein levels were observed for putative coo hydrogenase as well as a lactate permease and hyp hydrogenases for biofilm cells. Genes annotated for amino acid synthesis and nitrogen utilization were also predominant changers within the biofilm state. Ribosomal transcripts and proteins were notably decreased within the biofilm cells compared to exponential-phase cells but were not as low as levels observed in planktonic, stationary-phase cells. Several putative, extracellular proteins (DVU1012, 1545) were also detected in the extracellular fraction from biofilm cells.ConclusionsEven though both the planktonic and biofilm cells were oxidizing lactate and reducing sulfate, the biofilm cells were physiologically distinct compared to planktonic growth states due to altered abundances of genes/proteins involved in carbon/energy flow and extracellular structures. In addition, average expression values for multiple rRNA transcripts and respiratory activity measurements indicated that biofilm cells were metabolically more similar to exponential-phase cells although biofilm cells are structured differently. The characterization of physiological advantages and constraints of the biofilm growth state for sulfate-reducing bacteria will provide insight into bioremediation applications as well as microbially-induced metal corrosion

    A narrow-band speckle-free light source via random Raman lasing

    Full text link
    Currently, no light source exists which is both narrow-band and speckle-free with sufficient brightness for full-field imaging applications. Light emitting diodes (LEDs) are excellent spatially incoherent sources, but are tens of nanometers broad. Lasers on the other hand can produce very narrow-band light, but suffer from high spatial coherence which leads to speckle patterns which distort the image. Here we propose the use of random Raman laser emission as a new kind of light source capable of providing short-pulsed narrow-band speckle-free illumination for imaging applications

    Reductions in global biodiversity loss predicted from conservation spending

    Get PDF
    Halting global biodiversity loss is central to both the Convention on Biological Diversity (CBD) and United Nations Sustainable Development Goals (SDGs)1,2, but success to date has been very limited3–5. A critical determinant of overall strategic success (or failure) is the financing committed to biodiversity6–9; however, financing decisions are still hindered by considerable uncertainty over what any investment is likely to achieve6–9.. For greater effectiveness, we need an evidence-based model (EBM)10–12 showing how conservation spending quantitatively reduces the rate of loss. Here, we empirically quantify how i$14.4 billion of conservation investment reduced biodiversity loss across 109 signatory countries between 1996 and 2008, by an average 29% per country. We also show that biodiversity change in signatory countries can be predicted with high accuracy, using a dual model that combines the positive impact of conservation investment with the negative impact of economic, agricultural and population growth (i.e. human development pressures)13–18. Decision-makers can use this dual model to forecast the improvement that any proposed biodiversity budget would achieve under various scenarios of human development pressure, comparing those forecasts to any chosen policy target (including the CBD and SDGs). Importantly, we further find that spending impacts shrink as human development pressures grow, implying that funding may need to increase over time. The model therefore offers a flexible tool for balancing the SDGs of human development and biodiversity, by predicting the dynamic changes needed in conservation finance as human development proceeds

    Functional responses of methanogenic archaea to syntrophic growth.

    Get PDF
    Methanococcus maripaludis grown syntrophically with Desulfovibrio vulgaris was compared with M. maripaludis monocultures grown under hydrogen limitation using transcriptional, proteomic and metabolite analyses. These measurements indicate a decrease in transcript abundance for energy-consuming biosynthetic functions in syntrophically grown M. maripaludis, with an increase in transcript abundance for genes involved in the energy-generating central pathway for methanogenesis. Compared with growth in monoculture under hydrogen limitation, the response of paralogous genes, such as those coding for hydrogenases, often diverged, with transcripts of one variant increasing in relative abundance, whereas the other was little changed or significantly decreased in abundance. A common theme was an apparent increase in transcripts for functions using H(2) directly as reductant, versus those using the reduced deazaflavin (coenzyme F(420)). The greater importance of direct reduction by H(2) was supported by improved syntrophic growth of a deletion mutant in an F(420)-dependent dehydrogenase of M. maripaludis. These data suggest that paralogous genes enable the methanogen to adapt to changing substrate availability, sustaining it under environmental conditions that are often near the thermodynamic threshold for growth. Additionally, the discovery of interspecies alanine transfer adds another metabolic dimension to this environmentally relevant mutualism

    The global distribution and drivers of alien bird species richness

    Get PDF
    Alien species are a major component of human-induced environmental change. Variation in the numbers of alien species found in different areas is likely to depend on a combination of anthropogenic and environmental factors, with anthropogenic factors affecting the number of species introduced to new locations, and when, and environmental factors influencing how many species are able to persist there. However, global spatial and temporal variation in the drivers of alien introduction and species richness remain poorly understood. Here, we analyse an extensive new database of alien birds to explore what determines the global distribution of alien species richness for an entire taxonomic class. We demonstrate that the locations of origin and introduction of alien birds, and their identities, were initially driven largely by European (mainly British) colonialism. However, recent introductions are a wider phenomenon, involving more species and countries, and driven in part by increasing economic activity. We find that, globally, alien bird species richness is currently highest at midlatitudes and is strongly determined by anthropogenic effects, most notably the number of species introduced (i.e., "colonisation pressure"). Nevertheless, environmental drivers are also important, with native and alien species richness being strongly and consistently positively associated. Our results demonstrate that colonisation pressure is key to understanding alien species richness, show that areas of high native species richness are not resistant to colonisation by alien species at the global scale, and emphasise the likely ongoing threats to global environments from introductions of species.Ellie E. Dyer, Phillip Cassey, David W. Redding, Ben Collen, Victoria Franks, Kevin J. Gaston, Kate E. Jones, Salit Kark, C. David L. Orme, Tim M. Blackbur
    corecore