80 research outputs found

    The Effect of Macular Hole Duration on Surgical Outcomes: An Individual Participant Data Study of Randomized Controlled Trials

    Get PDF
    Topic: To define the effect of symptom duration on outcomes in people undergoing surgery for idiopathic full-thickness macular holes (iFTMHs) by means of an individual participant data (IPD) study of randomized controlled trials (RCTs). The outcomes assessed were primary iFTMH closure and postoperative best-corrected visual acuity (BCVA). Clinical Relevance: Idiopathic full-thickness macular holes are visually disabling with a prevalence of up to 0.5%. Untreated BCVA is typically reduced to 20/200. Surgery can close holes and improve vision. Symptom duration is thought to affect outcomes with surgery, but the effect is unclear. Methods: A systematic review identified eligible RCTs that included adults with iFTMH undergoing vitrectomy with gas tamponade in which symptom duration, primary iFTMH closure, and postoperative BCVA were recorded. Bibliographic databases were searched for articles published between 2000 and 2020. Individual participant data were requested from eligible studies. Results: Twenty eligible RCTs were identified. Data were requested from all studies and obtained from 12, representing 940 eyes in total. Median symptom duration was 6 months (interquartile range, 3–10). Primary closure was achieved in 81.5% of eyes. There was a linear relationship between predicted probability of closure and symptom duration. Multilevel logistic regression showed each additional month of duration was associated with 0.965 times lower odds of closure (95% confidence interval [CI], 0.935–0.996, P = 0.026). Internal limiting membrane (ILM) peeling, ILM flap use, better preoperative BCVA, face-down positioning, and smaller iFTMH size were associated with increased odds of primary closure. Median postoperative BCVA in eyes achieving primary closure was 0.48 logarithm of the minimum angle of resolution (logMAR) (20/60). Multilevel logistic regression showed for eyes achieving primary iFTMH closure, each additional month of symptom duration was associated with worsening BCVA by 0.008 logMAR units (95% CI, 0.005–0.011, P < 0.001) (i.e., ∼1 Early Treatment Diabetic Retinopathy Study letter loss per 2 months). ILM flaps, intraocular tamponade using long-acting gas, better preoperative BCVA, smaller iFTMH size, and phakic status were also associated with improved postoperative BCVA. Conclusions: Symptom duration was independently associated with both anatomic and visual outcomes in persons undergoing surgery for iFTMH. Time to surgery should be minimized and care pathways designed to enable this

    Human Auditory Cortical Activation during Self-Vocalization

    Get PDF
    During speaking, auditory feedback is used to adjust vocalizations. The brain systems mediating this integrative ability have been investigated using a wide range of experimental strategies. In this report we examined how vocalization alters speech-sound processing within auditory cortex by directly recording evoked responses to vocalizations and playback stimuli using intracranial electrodes implanted in neurosurgery patients. Several new findings resulted from these high-resolution invasive recordings in human subjects. Suppressive effects of vocalization were found to occur only within circumscribed areas of auditory cortex. In addition, at a smaller number of sites, the opposite pattern was seen; cortical responses were enhanced during vocalization. This increase in activity was reflected in high gamma power changes, but was not evident in the averaged evoked potential waveforms. These new findings support forward models for vocal control in which efference copies of premotor cortex activity modulate sub-regions of auditory cortex

    Functional MRI of Auditory Responses in the Zebra Finch Forebrain Reveals a Hierarchical Organisation Based on Signal Strength but Not Selectivity

    Get PDF
    BACKGROUND: Male songbirds learn their songs from an adult tutor when they are young. A network of brain nuclei known as the 'song system' is the likely neural substrate for sensorimotor learning and production of song, but the neural networks involved in processing the auditory feedback signals necessary for song learning and maintenance remain unknown. Determining which regions show preferential responsiveness to the bird's own song (BOS) is of great importance because neurons sensitive to self-generated vocalisations could mediate this auditory feedback process. Neurons in the song nuclei and in a secondary auditory area, the caudal medial mesopallium (CMM), show selective responses to the BOS. The aim of the present study is to investigate the emergence of BOS selectivity within the network of primary auditory sub-regions in the avian pallium. METHODS AND FINDINGS: Using blood oxygen level-dependent (BOLD) fMRI, we investigated neural responsiveness to natural and manipulated self-generated vocalisations and compared the selectivity for BOS and conspecific song in different sub-regions of the thalamo-recipient area Field L. Zebra finch males were exposed to conspecific song, BOS and to synthetic variations on BOS that differed in spectro-temporal and/or modulation phase structure. We found significant differences in the strength of BOLD responses between regions L2a, L2b and CMM, but no inter-stimuli differences within regions. In particular, we have shown that the overall signal strength to song and synthetic variations thereof was different within two sub-regions of Field L2: zone L2a was significantly more activated compared to the adjacent sub-region L2b. CONCLUSIONS: Based on our results we suggest that unlike nuclei in the song system, sub-regions in the primary auditory pallium do not show selectivity for the BOS, but appear to show different levels of activity with exposure to any sound according to their place in the auditory processing stream

    The role of the cerebellum in adaptation: ALE meta‐analyses on sensory feedback error

    Get PDF
    It is widely accepted that unexpected sensory consequences of self‐action engage the cerebellum. However, we currently lack consensus on where in the cerebellum, we find fine‐grained differentiation to unexpected sensory feedback. This may result from methodological diversity in task‐based human neuroimaging studies that experimentally alter the quality of self‐generated sensory feedback. We gathered existing studies that manipulated sensory feedback using a variety of methodological approaches and performed activation likelihood estimation (ALE) meta‐analyses. Only half of these studies reported cerebellar activation with considerable variation in spatial location. Consequently, ALE analyses did not reveal significantly increased likelihood of activation in the cerebellum despite the broad scientific consensus of the cerebellum's involvement. In light of the high degree of methodological variability in published studies, we tested for statistical dependence between methodological factors that varied across the published studies. Experiments that elicited an adaptive response to continuously altered sensory feedback more frequently reported activation in the cerebellum than those experiments that did not induce adaptation. These findings may explain the surprisingly low rate of significant cerebellar activation across brain imaging studies investigating unexpected sensory feedback. Furthermore, limitations of functional magnetic resonance imaging to probe the cerebellum could play a role as climbing fiber activity associated with feedback error processing may not be captured by it. We provide methodological recommendations that may guide future studies

    Transcutaneous electrical nerve stimulation reduces exercise-induced perceived pain and improves endurance exercise performance

    Get PDF
    Purpose. Muscle pain is a natural consequence of intense and prolonged exercise and has been suggested to be a limiter of performance. Transcutaneous electrical nerve stimulation (TENS) and interferential current (IFC) have been shown to reduce both chronic and acute pain in a variety of conditions. This study sought to ascertain whether TENS and IFC could reduce exercise-induced pain (EIP) and whether this would affect exercise performance. It was hypothesised that TENS and IFC would reduce EIP and result in an improved exercise performance. Methods. In two parts, 18 (Part I) and 22 (Part II) healthy male and female participants completed an isometric contraction of the dominant bicep until exhaustion (Part I) and a 16.1 km cycling time trial as quickly as they could (Part II) whilst receiving TENS, IFC and a SHAM placebo in a repeated measures, randomized cross-over, and placebo controlled design. Perceived EIP was recorded in both tasks using a validated subjective scale. Results. In Part I, TENS significantly reduced perceived EIP (mean reduction of 12%) during the isometric contraction (P = 0.006) and significantly improved participants’ time to exhaustion by a mean of 38% (P = 0.02). In Part II, TENS significantly improved (P = 0.003) participants’ time trial completion time (~2% improvement) through an increased mean power output. Conclusion. These findings demonstrate that TENS can attenuate perceived EIP in a healthy population and that doing so significantly improves endurance performance in both submaximal isometric single limb exercise and whole-body dynamic exercise
    corecore