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ABSTRACT 

Purpose. Muscle pain is a natural consequence of intense and prolonged exercise and has been 

suggested to be a limiter of performance. Transcutaneous electrical nerve stimulation (TENS) 

and interferential current (IFC) have been shown to reduce both chronic and acute pain in a 

variety of conditions. This study sought to ascertain whether TENS and IFC could reduce 

exercise-induced pain (EIP) and whether this would affect exercise performance. It was 

hypothesised that TENS and IFC would reduce EIP and result in an improved exercise 

performance.  

Methods. In two parts, 18 (Part I) and 22 (Part II) healthy male and female participants 

completed an isometric contraction of the dominant bicep until exhaustion (Part I) and a 16.1 

km cycling time trial as quickly as they could (Part II) whilst receiving TENS, IFC and a SHAM 

placebo in a repeated measures, randomized cross-over, and placebo controlled design. 

Perceived EIP was recorded in both tasks using a validated subjective scale.  

Results. In Part I, TENS significantly reduced perceived EIP (mean reduction of 12%) during 

the isometric contraction (P = 0.006) and significantly improved participants’ time to 

exhaustion by a mean of 38% (P = 0.02). In Part II, TENS significantly improved (P = 0.003) 

participants’ time trial completion time (~2% improvement) through an increased mean power 

output.  

Conclusion. These findings demonstrate that TENS can attenuate perceived EIP in a healthy 

population and that doing so significantly improves endurance performance in both 

submaximal isometric single limb exercise and whole-body dynamic exercise. 

 

Key words: Exercise-induced pain; time to exhaustion; time trial; exercise; gate control theory. 
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ABBREVIATIONS 

EIP, exercise-induced pain; ANOVA, analysis of variance; PO, power output; HR, heart rate; 

B[La], blood lactate; MVC maximal voluntary contraction; RPE, ratings of perceived exertion; 

TENS, transcutaneous electrical nerve stimulation; IFC, interferential current; TTE, time to 

exhaustion test; Hz, hertz; GXT, graded exercise test; TT, time trial completion time; BRUMS, 

Brunel universal mood states; 

 

 

INTRODUCTION 

Exercise-induced muscle pain (EIP) arises from an accumulation of endogenous algesic 

substances and an increase in intramuscular pressure (Cook et al. 1997). These endogenous 

algesics are released from cells when homoeostasis is disturbed as a consequence of intense 

exercise (Mauger et al. 2010). Therefore, EIP is closely bound to both the intensity and duration 

of the exercise task (Cook et al. 1997).  It is suggested that the perceived pain arising from 

exercise may play a combined role in the regulation of the level of exercise intensity and 

preservation of a metabolic reserve by the central nervous system (Mauger, 2014). However, 

the means by which this may occur is complex, and likely involves both physiological and 

psychological mechanisms. Indeed, increased activity of afferent fibres, which are stimulated 

by muscle nociceptors, can reduce maximal voluntary contraction of a muscle (GravenǦNielsen 

et al. 2002, Kennedy et al. 2013) and could reduce exercise performance through a reduction 

in voluntary activation (Kennedy et al. 2013). Thus, muscle pain may increase afferent neuron 

inhibition and obstruct or alter the ability of the brain to recruit muscle to produce force 

(GravenǦNielsen et al. 2002), which would ultimately contribute to fatigue and a decreased task 

performance. In addition to this, perceived pain provides a powerful psychological stimulus to 

disengage with the behaviour or action that is causing it. As EIP increases linearly with exercise 

intensity, it is suggested that intolerable EIP may influence decisions to reduce work rate (in 

order to reduce pain), or disengage with the exercise task (Kress and Stratler, 2007, Mauger, 

2014). In both these instances, an impeded endurance performance will be the result. In support 

this notion, individuals who are willing to tolerate more pain demonstrate superior endurance 

performances than those who are not (Astokorki and Mauger, 2016), and reducing pain during 
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exercise can result in an improved endurance performance (Mauger et al. 2010, Foster et al, 

2014).  

Transcutaneous electrical nerve stimulation (TENS) and interferential current (IFC) have been 

shown to elicit analgesic effects in a variety of conditions (Marchand et al. 1993; Robinson, 

1996; Salisbury & Johnson, 1997). The neurophysiological basis of muscle pain relief from 

TENS is believed to derive directly from the gate control theory of pain. Here it is suggested 

that non-nociceptive afferent fibres activate interneurons at the spinal cord level which inhibit 

the activity of nociceptive projection neurons, thus blunting nociceptive input from the 

peripheral tissues. Accordingly, TENS is proposed to selectively activate Aȕ large-diameter 

afferent fibres by high frequency stimulation, inhibiting constant transmission of nociceptive 

neurons by generating an afferent barrage of nerve impulses within the spinal cord (Melzack 

& Wall, 1967). It is also suggested that the application of TENS burst mode can lead to the 

release of endogenous opioids, and serotonin and a subsequent decrease in muscle pain (Sabino 

et al. 2008). IFC utilises a medium frequency alternating current with a various beat frequency 

(Gomes et al. 2014), which is believed to reduce pain transmission through gate control 

mechanisms, release endorphins and increase circulation of opioids (Melzack & Wall, 1967). 

Muscle stimulation using therapeutic current has previously been used in combination with 

exercise to achieve a variety of effects, including facilitated recovery and relief from delayed 

onset muscle soreness (Heyman, 2009; Vanderthommen et al. 2012). Given that EIP may be a 

factor affecting exercise capacity and performance, and that therapeutic muscle stimulation has 

shown promise in the treatment of muscle pain (Tourville etal. 2006), there may be scope to 

use this technique to reduce naturally occurring muscle pain during exercise.  

No studies have considered the effectiveness of TENS and IFC on EIP during fatiguing 

exercise. Therefore, the aim of this study was to investigate whether TENS or IFC elicit an 

analgesic effect during exercise, and whether this would improve endurance exercise 

performance. It was hypothesised that TENS and IFC would reduce perceived EIP, assessed 

using the Cook Scale (Cook et al. 1997), and improve participants’ endurance performance.  
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METHODS 

Participants and experimental design: Prior to participation in either Parts (Part I and Part II) 

of this study, an information sheet was given to participants, which included an 

inclusion/exclusion criteria checklist. Participants were excluded from the study if they had 

history of cardiovascular disorders (e.g. angina, heart attack, high blood pressure etc.), chronic 

medications that affect the central nervous system, current pregnancy, bleeding disorders (e.g. 

haemophilia), deep vein thrombosis, impaired sensation, acute/chronic infection (e.g. 

tuberculosis), malignancy, recently radiated tissue, skin diseases or severely damaged skin, 

types I or II diabetes, were using a cochlear implant hearing device or pacemakers, or any other 

condition that may be a danger to their participation (e.g. muscle injury). Following satisfactory 

completion of the inclusion/exclusion criteria checklist, all participants provided written 

informed consent and the research was approved by the University Ethics Committee 

(Reference Number: Prop 69_2014_2015 and Prop 146-2014_2015). Prior to all experimental 

occasions, participants were asked to refrain from the ingestion of alcohol 48 h before the 

laboratory visits, and asked to refrain from any vigorous exercise (24 h prior), caffeine (8 h 

prior) and analgesics (6 h prior) prior to any test occasion.  

This study comprised of two Parts (Part I and Part II). One participant completed both Part I 

and Part II of this study. The purpose of Part I was to demonstrate a proof of principle that 

TENS and IFC are able to attenuate EIP. Part II was subsequently conducted to ascertain 

whether the reduction in EIP from TENS and IFC would elicit an improvement in endurance 

exercise performance. The two separates Parts of this study were necessary because where 

interventions to reduce pain during self-paced exercise have been previously used (e.g. Mauger 

et al. 2010), participants usually appear to moderate their work rate in order to maintain the 

same linear progression of EIP. Thus is the current study, Part I provided an exercise task that 

could demonstrate a reduction of perceived EIP as a result of the intervention, which could 

then be directly attributed to any potential performance effect during whole body exercise in 

Part II. As both parts of this study followed a repeated measures design, all participants 

performed all conditions in a randomised, crossover and placebo controlled design. 
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Part I 

Participants and experimental design: Eighteen recreationally active male (n= 11) and female 

(n= 7) participants were recruited for Part I of this study. Sample size was estimated from 

power calculations using a commercially available software package (GPower) and with mean 

and SD data from similar exercise and pain studies (Mauger et al. 2010; Foster et al. 2014). 

The participants’ mean age, height, body mass, and peak biceps flexion force were 25 ± 6 yrs, 

176 ± 11 cm and 73.5 ± 16.6 kg, 200 ± 65 N respectively. Participants attended the laboratory 

on four occasions (a familiarisation visit and three experimental conditions) at the same time 

of day (± 2 h) to help control for potential circadian influence on psychological variables 

pertinent to this study (Gobbo and Falciati, 2014). The first laboratory visit provided a 

familiarisation (FAM) of all experimental procedures to reduce learning effects, and this was 

followed by three further visits that involved a TENS intervention, an IFC intervention and a 

placebo controlled condition (SHAM). TENS, IFC and SHAM were completed in a single-

blind, randomised and placebo controlled design. 

 

Familiarisation (FAM): Participants were initially tested for sensory discrimination using a 

sharp and blunt patella hammer, and a skin integrity test to ensure normal skin sensation. 

Following this, participants underwent a full familiarisation of TENS and IFC, which also 

provided confirmation for subsequent experimental visits that the applied current intensity 

elicited a tingling sensation without muscle contraction and/or muscle pain (i.e. non-painful 

paraesthesia). During stimulation, and after testing, participants were monitored for signs of 

skin irritation, nausea, swelling and pain. Following this, participants were introduced to 

standard instructions for the numeric perceived pain rating scale (Cook et al. 1997) and rating 

of perceived exertion (RPE) using the Borg (6-20) (Borg, 1998) scale. Participants were 

instructed to report RPE solely as effort to drive the limb (Pageaux et al. 2015) (i.e. independent 

of pain and discomfort) and that pain should be anchored to exercise-induced pain (i.e. numeric 

values given relative to their experience of muscle pain). After participants confirmed their 

understanding of the pain and RPE scales, participants were familiarised with performing a 

maximal voluntary contraction (MVC) of their dominant arm and the time to exhaustion (TTE) 

test.  
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Application of TENS, IFC and SHAM: Prior to electrode placement and in order to reduce 

electrical resistance, the skin over the biceps of the dominant arm was cleaned thoroughly. 

Following this, bipolar surface electrodes were attached to the belly of the biceps of the 

dominant arm 2.5 cm apart. This location was marked so that the placement would remain 

consistent between visits. Using a Vectra Genisys multi-waveform stimulator (Chattanooga 

Group, Hixon, TN, USA) the parameters of biphasic IFC pulses were delivered in a continuous 

mode with a pulse frequency of 100 Hz. For the biphasic TENS pulses, a continuous pattern of 

stimulation was used, with a pulse width of 300 ȝs and a frequency of 100 Hz. A bipolar IFC 

set-up was used in the current study in order to maintain blinding of conditions. Both bipolar 

and quadripolar IFC have been shown to be equally successful when used to manage pain 

conditions (Salisbury & Johnson, 1995). The current intensity for the TENS and IFC conditions 

were selected so that participants reached a strong but appropriate intensity without causing 

any noticeable muscle contraction. Stimulation was applied for 5 min prior to, and throughout 

the TTE test and during the pre- and post MVC. A SHAM stimulation was used as a placebo-

controlled condition. During the SHAM condition, electrodes were placed in the same locations 

as the IFC and TENS conditions, but participants received no current and were told “This type 

of stimulation is supposed to reduce pain by using a subthreshold stimulus that you will not 

able to perceive”. This explanation was strengthened via a visual display of the electrical 

current on an oscilloscope. 

  

Maximal Voluntary Contraction (MVC): In order to ensure that maximal effort was given 

during the TTE, and that muscle fatigue occurred as a result, an MVC was completed prior to, 

and immediately after completion of the TTE test. The pre-MVC test also served to set the 

target force for the TTE test on that experimental visit. Following a warm-up, participants 

performed three unilateral (dominant arm) maximal voluntary contractions (MVC) of the 

elbow flexors against a load cell (Globus Ergo Meter, Globus, Codogne, Italy), which were 

separated by 3 min rest. To do this, participants were in a seated position with the upper arm 

resting on a bench and the elbow angle at 90º and the wrist angle at 180º. Arm angles for the 

MVC and TTE tests were measured using a goniometer and participant body position was 

maintained both during the tests and between visits by standardising the sitting position for 

each participant. Each MVC test was performed for 5 s with a rapid increase in force over 1 s, 

a sustained maximum for 3 s, and a gradual release over the final second. Maximal force was 

recorded for each MVC. Participants were strongly encouraged to perform maximally 
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throughout each contraction. The maximum of the three values was used to establish the 20% 

MVC for the time to exhaustion task (TTE) performed in that visit. On completion of the TTE 

task, participants performed a final, single MVC.  

 

Time to Exhaustion (TTE) test: A rest period of 10-min was provided after the pre-MVCs. 

Following this, participants undertook the TTE in the same standardised seated position 

described for the MVC tests. The TTE task required the participant to maintain a 20% isometric 

MVC of the biceps until the force dropped for 2 s, or when the participant withdrew from the 

task. During the TTE task, participants were asked to rate their perceived pain and RPE every 

30 s. The experimenter provided no encouragement and sat out of sight from the participants.  

In visits 2-4, participants completed a pre-MVC, followed by the TTE test and a post MVC 

immediately after, with either TENS, IFC or SHAM stimulation being applied during the TTE.  

 

Part II 

Participants and experimental design: Twenty-two participants (male n=14, female n=8), 

trained in cycling or triathlon and exercising regularly (>3 h per week) were recruited for this 

study. Sample size was estimated with a commercially available software package (GPower) 

and with mean and SD data from similar exercise and pain studies (Mauger et al. 2010; Foster 

et al. 2014). The participants’ mean age, height and body mass, VO2max, and peak power output 

were 33 ± 8 yrs, 173 ± 7 cm, 71.8 ± 13.3 kg, 53 ± 7 ml/min/kg, and 286 ± 75 (W), respectively. 

Participants attended the laboratory on four occasions at the same time of day (± 2 h) to 

complete a full familiarisation (FAM) of all experimental procedures, two experimental visits 

(TENS and IFC) and a placebo controlled condition (SHAM). TENS, IFC and SHAM were 

completed in a single-blind, randomised and counter-balanced design.  

 

Familiarisation: On the first visit to the laboratory, participants underwent the same screening, 

stimulation and perceptual scale familiarisations described in Part I. Following this, 

participants completed a graded exercise test (GXT) to exhaustion. Following a 30 min 

recovery period, participants completed a 10 mile (16.1 km) cycling time trial (TT) as fast as 
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they could in order to provide a familiarisation of this task for the subsequent three 

experimental visits. 

 

Graded Exercise Test (GXT): Following a standardized 10-min warm-up at a self-selected 

intensity on the cycle ergometer (Velotron, Racermate, Seattle, WA), participants completed 

an incremental step protocol to exhaustion. Power output (PO) started at 100 W with increases 

of 30 W. min-2, and participants maintained a self-selected cadence until volitional exhaustion 

or when they could no longer maintain the required cadence. During the test, gas exchange 

(Cortex Metalyser 3B, Cortex GmbH, Lepzig, Germany) and heart rate (HR) (Polar Electro, 

N2965, Finland) were recorded continuously, with RPE and perceived pain recorded at the end 

of each stage. Throughout the test verbal encouragement was given by the researcher. On 

completion of the test, participants received a 30 min rest period during which they were 

familiarised with, and completed, a mood questionnaire (Brunel Universal Mood States 

(BRUMS)) (Terry et al. 2003)). 

 

Ten mile time trial (TT): In order to provide a measure of endurance performance, participants 

were instructed to complete a 10-mile (16.1-km) cycling time trial (TT) on the cycle ergometer 

(Velotron, Racermate, Seattle, WA) in the fastest possible time. Participants could change gear 

and cadence to vary their PO, and they could see the distance they had completed but were 

given no information on performance or physiological parameters (e.g. PO, HR, time elapsed). 

Participants were asked to report RPE and perceived pain every km completed. A fingertip 

sample of blood was acquired every 4 km for analysis of blood lactate concentration (B[La]).  

 

TENS, IFC and SHAM stimulation: TENS, IFC and SHAM were applied in visits 2-4. The 

same stimulation parameters and procedures described in Part I were also used for Part II. 

However, stimulation was applied to the belly of the vastus lateralis of both thighs, rather than 

the biceps. To assess potential differences in mood at baseline between conditions, and 

following the TT, a BRUMS was completed on entry to the laboratory and following 

completion of the TT. 
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Data and statistical analysis: Prior to statistical analysis, standard assumptions were checked 

for each statistical test, and none of these were violated. Time to exhaustion (TTE) and TT 

completion time were analysed using a repeated measures ANOVA and Bonferroni Pairwise 

Comparisons. Main effect and interaction effects for EIP, RPE, B[La], PO, HR were assessed 

using three-way ANOVA with repeated measures, with follow-up paired samples t-tests used 

to detect differences between conditions when an interaction effect had been observed. All 

statistical analysis was performed using the statistical package SPSS version 22 for Windows. 

Descriptive data are reported as means ± SD. Statistical significance was accepted when P < 

0.05. 

 

 

RESULTS 

 

Part I 

Time to Exhaustion (TTE): ANOVA revealed a significant difference in the time to exhaustion 

between conditions (F (2, 34) = 6.763, P = 0.003), as shown in Figure 1a. Pairwise comparisons 

revealed a significantly different TTE time between TENS (10 min 49 s ± 6 min 16 s) and 

SHAM conditions (7 min 52 s ± 2 min 51 s) (P = 0.31) and between IFC (11 min 17 s ± 6 min 

23 s) and SHAM conditions (P = 0.02). No significant difference between TENS and IFC 

conditions was observed (P > 0.05). 

 

Exercise-induced pain (EIP): A 3 x 8 ANOVA revealed a significant main effect of condition 

for perceived exercise-induced pain (F (1.24, 19.13) = 8.39, P = 0.006). There was also a significant 

main effect for time (P < 0.001). There was also a significant interaction effect for exercise-

induced pain over time between conditions during the TTE test (F (3.73, 63.4) = 4.95, P = 0.002), 

as shown in Figure 1b. Follow-up paired-sample t-tests showed a significantly different pain 

perception between TENS and SHAM conditions at 120 s (t (17) = 2.482, P = 0.024), 180 s (t 

(17) = 2.319, P = 0.033), 210 s (t (17) = 3.402, P = 0.003) and 240 s (t (17) = 3.589, P = 0.002. 

Significant differences were also shown between IFC and SHAM conditions at 120 s (t (17) = 

2.482, P = 0.024), 150 s (t (17) = 2.388, P = 0.029), 180 s (t (17) = 2.997, P = 0.008), 210 s (t (17) 
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= 3.298, P = 0.004) and 240 s (t (17) = 2.858, P = 0.011). No differences were found at any time 

point between TENS and IFC conditions (P > 0.05). 

 

Rating of Perceived Exertion (RPE): There was no significant main effect of condition (F (2, 34) 

= 2.71, P = 0.081) for RPE. There was a main effect for time (P < 0.001).  No interaction 

effects for RPE during the TTE were observed (F (4.08, 69.39) = 1.82, P = 0.134). 

 

Maximal Voluntary Contraction (MVC): No significant differences between conditions were 

found for the pre-MVC (F (1.4, 23.4) = 1.758, P = 0.188) or the post-MVC (F (2, 34) = 1.499, P = 

0.238). MVC was significantly reduced following the TTE in the SHAM (t (17) = 9.069, P < 

0.001), TENS (t (17) = 7.037, P < 0.001) and IFC conditions (t (17) = 8.558, P < 0.001), as shown 

in Figure 1d, suggesting that significant fatigue and performance decrement had occurred in all 

conditions following the TTE task.  

 

Part II 

Time Trial (TT) completion time: ANOVA revealed a significant difference in completion time 

between conditions (F (2, 42) = 6.597, P = 0.003). Pairwise comparisons revealed that 

participants performed a significantly faster TT (P = 0.001) in the TENS condition (29 min 6 

s ± 3 min 20 s) compared to the SHAM (29 min 39 s ± 3 min 34 s) condition. There were no 

significant differences (P = 0.872) between the IFC condition (29 min 28 s ± 3 min 34 s) and 

the SHAM, or the TENS and IFC conditions (P = 0.116).  

 

Power Output (PO): ANOVA revealed a significant main effect of condition for power output 

(F (2, 38) = 3.48, P = 0.041). There was also a main effect for distance completed (P < 0.001), 

but no interaction effect (F (30, 570) = 0.92, P = 0.587), as shown in Figure 2a. 
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Rating Perceived Exertion (RPE): No significant main effects for condition were observed (P 

> 0.05). There was a main effect for distance completed (P < 0.001), but no significant 

interaction effect was found (P > 0.05).  

 

Exercise-induced pain (EIP): There was no main effect of condition for EIP (F (1.41, 29.62) = 3.60, 

P = 0.054). There was a significant main effect for distance completed (P < 0.001) and a 

significant interaction effect (F (30, 630) = 2.04, P = 0.001). Follow-up paired t-tests revealed that 

participants perceived significantly less EIP in the TENS condition compared to the SHAM at 

the 4th, 6th, 9th, 11th, 12th, 13th and 15th km (P < 0.05), as shown in Figure 2b. 

 

Heart Rate (HR): ANOVA revealed a significant difference in the mean HR between 

conditions during the TT (F (1.38, 29.06) = 4.016, P = 0.042). There was a significant main effect 

for distance completed (P < 0.05), and a significant interaction effect was observed (F (1.3, 27.8) 

= 3.171, P = 0.008). Follow-up paired-sample t-tests showed a significant difference in HR 

between TENS and SHAM conditions between the 8th-16th km (P < 0.05). Additionally, 

significant differences in HR between IFC and SHAM conditions were observed between the 

11th-16th km (P < 0.05). There were also significant differences in HR between TENS and IFC 

conditions during the 9th, 14th, 15th and 16th km (P < 0.05). Differences in HR between 

conditions are shown in Figure 2c. 

 

Blood lactate B[La]: ANOVA revealed a significant main effect of condition (F (1.49, 31.37) = 

7.54, P = 0.004), a main effect for distance completed (P < 0.05) and a significant interaction 

effect F (3.68, 77.63) = 3.51, P = 0.013). Follow up paired-sample t-tests showed a significantly 

different B[La] between TENS and SHAM conditions at the 12th km (t (21) = - 2.850, P = 0.01), 

and the 16th km (t (21) = - 4.370, P < 0.001). There was also a difference in B[La] between IFC 

and SHAM conditions at the 16th km (t (21) = - 3.632, P = 0.002), and a significant difference 

in B[La] between TENS and IFC conditions at the 12th km (t (21) = 2.496, P = 0.021), as shown 

in Figure 2d. 
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BRUMS: No differences in mood states were found between conditions pre- or post TT. Paired-

sample t-tests showed a significant difference for vigour from pre- to post TT during the TENS 

condition (t (21) = - 2.114, P = 0.047). No other differences in pre- to post mood states were 

observed.  

 

 

DISCUSSION 

This study investigated whether TENS and IFC can moderate EIP, and whether this would lead 

to an improvement in endurance performance. The primary finding was that both TENS and 

IFC were able to significantly reduce EIP during single limb exercise, but only TENS was 

capable improving whole-body endurance performance. This is the first study utilising a 

randomised, crossover and placebo controlled design, which shows an ergogenic effect for 

TENS. This study also provides support for the notion that EIP is a limiter of endurance 

performance in both single limb and whole-body exhaustive exercise. Although pain tolerance 

has long been linked to athletic potential (Scott and Gijsbers, 1981), it is only relatively recently 

that a growing body of empirical evidence has provided strong support this notion. EIP may 

exacerbate fatigue by reducing voluntary activation of the muscle (Kennedy et al. 2013) or by 

contributing to a host of unpleasant sensations (Kress and Stratler, 2007) that either leads to a 

decision to reduce work rate or disengage with the task (Mauger, 2014). Whilst the current 

study cannot identify whether psychological or physiological determinants led to the apparent 

ergogenic effect of therapeutic muscle stimulation, it does provide further evidence that 

analgesic interventions during exercise can improve endurance performance. 

In both Parts of the study, EIP increased as function of time and reached its most intense at the 

end of the exercise, where near maximal values were observed. To moderate this pain, without 

changing the metabolic environment at the muscle, TENS and IFC were used to inhibit the 

transmission of the nociceptive signal at the spinal level. The TENS intervention appeared to 

reduce perceived pain, which resulted in a longer time to exhaustion of the sustained isometric 

contraction and a faster TT time. The analgesic mechanism of TENS and IFC are suggested to 

be underpinned by the gate-control theory of pain (Sluka & Walsh, 2003). Indeed, when TENS 

and IFC are applied to produce a strong comfortable and non-painful paraesthesia, large 

diameter afferents (A-beta fibres) are selectively activated (Sluka & Walsh, 2003). The 



14 

 

activation of these large diameter low threshold mechano-receptive nerve fibres could inhibit 

the nociceptive transmission from small diameter higher threshold nociceptive (A-delta and C) 

fibres through pre and post synaptic inhibition in the dorsal horn of the spinal cord (Melzack 

& Wall, 1967). This would reduce the number of nociceptive signals reaching the higher brain 

centres and consequently reduce the perceived pain for a given stimulus at the nociceptor. A 

reduction in the afferent barrage from Type III and IV fibres could also offset the reduction in 

voluntary activation that is observed during painful exercise (Kennedy et al. 2013), which 

would likely allow for an improved exercise performance. Analgesia through TENS and IFC 

may also be explained by the release of endogenous opioids (Sabino et al. 2008). Whilst 

evidence for this mechanism is stronger for low frequency TENS (Sjölund & Eriksson, 1979), 

more recent studies on animal models also suggest that analgesia by high frequency TENS is 

reduced by systemic naloxone in high enough dose to block ȝ, į and ț opioid receptors (Han 

et al.1991), thus supporting a role for endogenous opioids for both high and low frequency 

TENS. The observation that IFC only provided an analgesic advantage in single limb exercise 

is contrary to what was expected, and difficult to reconcile. The most likely reason is that whilst 

TENS is suggested to primarily operate according to Gate Control Theory, IFC involves 

modulation of the transmission of pain through the release of endogenous opioids (Sabino et 

al. 2008). Ray and Carter (2007) have previously shown that endogenous opioids do not appear 

to modulate acute EIP, and so the lack of analgesic effect of IFC could be explained by it 

primarily operating through this mechanism.  

 

The mean reduction in perceived pain (compared to the SHAM condition) elicited by TENS 

was approximately 12% during single-limb exercise, with a stronger effect evident later in the 

exercise (>30% after 180 s – see Figure 1b). The greater reductions in pain towards the end of 

exercise are paralleled by the increasingly noxious environment in the muscle and the 

consequential increased pain (Cook et al., 1997). Therefore, the apparent analgesic effect of 

the stimulation was most noticeable during a noxious environment that elicited a pain intensity 

of ~4.3 (‘Somewhat strong pain’) and above on the Cook Scale (Cook et al. 1997). It is 

important to note that in the familiarisation visits, this scale was anchored specifically 

according to previously experienced maximum and minimum levels of muscle pain during 

exercise, rather than a general pain sensation (e.g. dental pain), so as to provide a measure 

specific to the experiences of EIP. The effectiveness of the analgesia observed in the current 

study is supported by some studies which have used TENS to reduce pain. Indeed, in a cross-
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over study investigating neuropathic pain in patients with spinal cord injury, analgesic TENS 

was shown to elicit a 29-38% improvement on a global relief scale. Furthermore, Bjordal et al. 

(2003) demonstrated a 26.5% mean reduction in analgesic consumption for post-operative 

patients following a well-controlled TENS intervention. Salisbury and Johnson (1995) have 

also shown that TENS increased the cold pain threshold and that IFC decreased cold pain 

intensity. However, whilst several studies have demonstrated positive analgesic effects of 

TENS, there are a number of studies that show no such effect (Johnson & Tabasam, 1998; 

Claydon et al. 2008; Gomes et al. 2014). The numerous systematic reviews and meta-analysis 

(Zeng et al., 2015) on this area suggest that different TENS parameters, patient groups, 

outcome measures and a lack of placebo controls and randomisation are the reason for the 

equivocal findings for the effectiveness of TENS. Therefore, in the current study the use of a 

placebo controlled condition, the randomisation of conditions and the controlled exercise 

intensity between conditions and participants presents a robust experimental design that 

supports the effectiveness of TENS as an analgesic intervention, and a role for EIP in endurance 

performance. 

 

A notable observation in the current study is that endurance performance improved following 

a reduction in pain, but with no significant change in RPE between conditions. It has been 

suggested that RPE is the conscious manifestation of afferent information from a host of 

afferent physiological systems and external cues, and that this perception of effort is an 

important determinant of endurance performance (Tucker, 2009). However, there is strong 

evidence to suggest that the primary generator for perception of effort is the corollary discharge 

(i.e. an internal signal that arises from centrifugal motor commands) associated with central 

motor command (McCloskey, 1981), and that this is independent from afferent feedback 

(including pain) from the working muscles and other interoceptors (de Morree et al. 2014). 

Indeed, feelings of pain and discomfort have often been assessed as part of the perception of 

effort (Noble & Robertson, 1996), although numerous studies have shown that pain and effort 

can be dissociated (Cook et al. 1997; Pageaux et al. 2015; Angius et al. 2015; Astokorki & 

Mauger, 2016) and are therefore distinct entities. By dissociating perception of effort and EIP 

in the current study, we were able to observe the individual effects of therapeutic muscle 

stimulation on EIP and RPE, and the consequent impact on endurance performance. In-line 

with our hypothesis, a reduction in EIP paralleled an improvement in TTE and TT performance. 

This finding supports the view that EIP is a contributing factor to task cessation and self-paced 
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performance (Mauger, 2014), but is contrary to the view that endurance performance is 

primarily determined by perception of effort, as stated by the Psychobiological Model 

(Marcora, 2010). Although this model acknowledges that severe pain (such as that from a 

muscle strain) would affect motivation (and therefore inhibit performance), it suggests that the 

muscle pain normally experienced during high-intensity aerobic exercise does not limit 

performance in healthy humans (Marcora, 2010). The results of the current study suggest that 

‘normal’ EIP experienced during exhaustive exercise does affect performance and that it can 

be moderated independently of perception of effort. These findings support other studies which 

demonstrate that an analgesic intervention is able to improve exercise performance in a variety 

of exercise models (Mauger et al. 2010; Foster et al. 2014) and strengthens the notion (Kress 

& Statler, 2007) that tolerance of EIP is an important prerequisite for endurance performance 

(Mauger, 2013, Mauger, 2014). 

 

CONCLUSION 

In conclusion, the findings of this study suggest that TENS can elicit an analgesic effect on EIP 

during both an exhaustive single limb, submaximal isometric contraction and in whole-body 

exercise. Reducing pain during this exercise improved endurance performance, without any 

changes to participants’ perception of effort. Further studies are needed to identify how TENS 

or IFC elicits an analgesic effect for EIP, and the psychophysiological mechanisms 

underpinning the subsequent improvement in endurance performance. 

 

 

CONFLICT OF INTEREST  

The authors of this paper have no conflicts of interest. 

 

 

 

 



17 

 

REFERENCES 

1. Angius L, Hopker JG, Marcora SM, Mauger AR (2015) The effect of transcranial direct 

current stimulation of the motor cortex on exercise-induced pain. Eur J Appl Physiol 

115:2311-2319.  

2. Astokorki A, Mauger A (2016) Tolerance of exerciseǦinduced pain at a fixed rating of 

perceived exertion predicts time trial cycling performance. Scand J Med Sci Sports  

3. Bjordal JM, Johnson MI, Ljunggreen AE (2003) Transcutaneous electrical nerve 

stimulation (TENS) can reduce postoperative analgesic consumption. A metaǦanalysis with 

assessment of optimal treatment parameters for postoperative pain. European Journal of 

Pain 7:181-188. 

4. Borg G (1998) Borg's perceived exertion and pain scales. Human kinetics  

5. Claydon LS, Chesterton LS, Barlas P, Sim J (2008) Effects of simultaneous dual-site TENS 

stimulation on experimental pain. European Journal of Pain 12:696-704  

6. Cook DB, O'Connor PJ, Eubanks SA, Smith JC, Lee M (1997) Naturally occurring muscle 

pain during exercise: assessment and experimental evidence. Med Sci Sports Exerc 29:999-

1012  

7. de Morree HM, Klein C, Marcora SM (2014) Cortical substrates of the effects of caffeine 

and time-on-task on perception of effort. J Appl Physiol (1985) 117:1514-1523. 

doi:10.1152/japplphysiol.00898.2013 [doi]  

8. Foster J, Taylor L, Chrismas BC, Watkins SL, Mauger AR (2014) The influence of 

acetaminophen on repeated sprint cycling performance. Eur J Appl Physiol 114:41-48. 

9. Gomes AdO, Silvestre AC, Silva CFd, Gomes MR, Bonfleur ML, Bertolini GRF (2014) 

Influence of different frequencies of transcutaneous electrical nerve stimulation on the 

threshold and pain intensity in young subjects. Einstein (São Paulo) 12:318-322 

10. GravenǦNielsen T, Lund H, ArendtǦNielsen L, DanneskioldǦSamsøe B, Bliddal H (2002) 

Inhibition of maximal voluntary contraction force by experimental muscle pain: a centrally 

mediated mechanism. Muscle Nerve 26:708-712 

11. Han J, Chen X, Sun S et al (1991) Effect of low-and high-frequency TENS on Met-

enkephalin-Arg-Phe and dynorphin A immunoreactivity in human lumbar CSF. Pain 

47:295-298 

12. Heyman E, De Geus B, Mertens I, Meeusen R (2009) Effects of four recovery methods on 

repeated maximal rock climbing performance. Medicine Science in Sports Exercise 

41:1303 



18 

 

13. Johnson M, Tabasam G (1998) A questionnaire survey on the clinical use of interferential 

currents (IFC) by physiotherapists. 29.  

14. Kennedy DS, McNeil CJ, Gandevia SC, Taylor JL (2013) Firing of antagonist small-

diameter muscle afferents reduces voluntary activation and torque of elbow flexors. The 

Journal of Physiology 591(14):3591–3604. 

15. Kress JL, Statler T (2007) A naturalistic investigation of former Olympic cyclists' cognitive 

strategies for coping with exertion pain during performance. J Sport Behav 30:428  

16. Marchand S, Charest J, Li J, Chenard J, Lavignolle B, Laurencelle L (1993) Is TENS purely 

a placebo effect? A controlled study on chronic low back pain. Pain 54:99-106 

17. Marcora S (2010) Last word on point: counterpoint: afferent feedback from fatigued 

locomotor muscles is not an important determinant of endurance exercise performance. J 

Appl Physiol 108:470-470 

18. Mauger AR (2014) Factors affecting the regulation of pacing: current perspectives. Open 

Access J Sports Med 5:209-214 

19. Mauger AR (2013) Fatigue is a pain—the use of novel neurophysiological techniques to 

understand the fatigue-pain relationship. Frontiers in physiology 4:104 

20. Mauger AR, Jones AM, Williams CA (2010) Influence of acetaminophen on performance 

during time trial cycling. J Appl Physiol (1985) 108:98-104. 

doi:10.1152/japplphysiol.00761.2009 [doi] 

21. McCloskey D (1981) Centrally-generated commands and cardiovascular control in man. 

Clin Exp Hypertens 3:369-378 

22. Melzack R, Wall PD (1967) Pain mechanisms: a new theory. Surv Anesthesiol 11:89-90 

23. Noble B, Robertson R (1996) The Borg scale: development, administration and 

experimental use. Perceived exertion.Human Kinetics, Champaign 101:5992 

24. Pageaux B, Angius L, Hopker JG, Lepers R, Marcora SM (2015) Central alterations of 

neuromuscular function and feedback from group III-IV muscle afferents following 

exhaustive high-intensity one-leg dynamic exercise. Am J Physiol Regul Integr Comp 

Physiol 308:R1008-20. doi:10.1152/ajpregu.00280.2014 [doi] 

25. Ray CA, Carter JR (2007) Central modulation of exerciseǦinduced muscle pain in humans. 

J Physiol (Lond ) 585:287-294   

26. Robinson AJ (1996) Transcutaneous electrical nerve stimulation for the control of pain in 

musculoskeletal disorders. Journal of Orthopaedic & Sports Physical Therapy 24:208-226 



19 

 

27. Sabino GS, Santos CM, Francischi JN, De Resende MA (2008) Release of endogenous 

opioids following transcutaneous electric nerve stimulation in an experimental model of 

acute inflammatory pain. The Journal of Pain 9:157-163 

28. Salisbury L, Johnson M (1995) The analgesic effects of interferential therapy compared 

with TENS on experimental cold induced pain in normal subjects. Physiotherapy 81:741 

29. Schmitz RJ, Martin DE, Perrin DH, Iranmanesh A, Rogol AD (1997) Effect of interferential 

current on perceived pain and serum cortisol associated with delayed onset muscle 

soreness. J Sport Rehab 6:30-37.   

30. Scott V, Gijsbers K (1981) Pain perception in competitive swimmers. Br Med J (Clin Res 

Ed) 283(6284):91–93. 

31. Sjölund BH, Eriksson MB (1979) The influence of naloxone on analgesia produced by 

peripheral conditioning stimulation. Brain Res 173:295-301 

32. Sluka KA, Walsh D (2003) Transcutaneous electrical nerve stimulation: basic science 

mechanisms and clinical effectiveness. The Journal of Pain 4:109-121  

33. Terry PC, Lane AM, Fogarty GJ (2003) Construct validity of the Profile of Mood States—

Adolescents for use with adults. Psychol Sport Exerc 4:125-139 

34. Tourville TW, Connolly DA, Reed BV (2006) Effects of sensory-level high-volt pulsed 

electrical current ondelayed-onset muscle soreness. J Sports Sci 24:941-949  

35. Tucker R (2009) The anticipatory regulation of performance: the physiological basis for 

pacing strategies and the development of a perception-based model for exercise 

performance. Br J Sports Med 43:392-400. doi:10.1136/bjsm.2008.050799 [doi]  

36. Vanderthommen M, Triffaux M, Demoulin C, Crielaard J, Croisier J (2012) Alteration of 

muscle function after electrical stimulation bout of knee extensors and flexors. Journal of 

Sports Science and Medicine 11:592-599  

37. Zeng X, Zhang Y, Kwong JS et al (2015) The methodological quality assessment tools for 

preclinical and clinical studies, systematic review and metaǦanalysis, and clinical practice 

guideline: a systematic review. Journal of EvidenceǦBased Medicine 8:2-10 

 

 

 

 

 

 

 



20 

 

FIGURE CAPTIONS 

 

 

Figure 1. Performance and perceptual differences between conditions in Part I. Panel A shows 

the TTE differences between conditions. Panel B shows exercise-induced pain intensity over 

time between conditions during the TTE test. Panel C shows the differences in mean exercise-

induced pain intensity between conditions over the TTE test. Panel D shows maximal voluntary 

contraction values for pre- and post TTE test between conditions. *significant difference (P < 

0.05).  **significant difference between IFC and SHAM (P < 0.05). # significant difference 

between TENS and SHAM (P < 0.05). $ main effect for condition (P < 0.05).  

 

Figure 2. Performance, physiological and perceptual differences between conditions over time 

during the time trial in Part II. Panel A shows the power output differences between conditions 

over time. Panel B shows exercise-induced pain intensity over time between conditions. Panel 

C shows heart rate values between conditions. Panel D shows the blood lactate concentration 

between conditions. # significant difference between TENS and SHAM (P < 0.05). ** 

significant difference between IFC and SHAM (P < 0.05).  § significant difference between 

TENS and IFC (P < 0.05). $ main effect for condition (P < 0.05).  
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