279 research outputs found

    Statistical Model of Heavy-Ion Fusion-Fission Reactions

    Full text link
    Cross-section and neutron-emission data from heavy-ion fusion-fission reactions are consistent with the fission of fully equilibrated systems with fission lifetime estimates obtained via a Kramers-modified statistical model which takes into account the collective motion of the system about the ground state, the temperature dependence of the location and height of fission transition points, and the orientation degree of freedom. If the standard techniques for calculating fission lifetimes are used, then the calculated excitation-energy dependence of fission lifetimes is incorrect. We see no evidence to suggest that the nuclear viscosity has a temperature dependence. The strong increase in the nuclear viscosity above a temperature of approximately 1.3 MeV deduced by others is an artifact generated by an inadequate fission model.Comment: Full paper submitted to PRC to accompany our recently published Phys. Rev. Lett. 101, 032702 (2008

    Identification and Characterization of Antifungal Compounds Using a Saccharomyces cerevisiae Reporter Bioassay

    Get PDF
    New antifungal drugs are urgently needed due to the currently limited selection, the emergence of drug resistance, and the toxicity of several commonly used drugs. To identify drug leads, we screened small molecules using a Saccharomyces cerevisiae reporter bioassay in which S. cerevisiae heterologously expresses Hik1, a group III hybrid histidine kinase (HHK) from Magnaporthe grisea. Group III HHKs are integral in fungal cell physiology, and highly conserved throughout this kingdom; they are absent in mammals, making them an attractive drug target. Our screen identified compounds 13 and 33, which showed robust activity against numerous fungal genera including Candida spp., Cryptococcus spp. and molds such as Aspergillus fumigatus and Rhizopus oryzae. Drug-resistant Candida albicans from patients were also highly susceptible to compounds 13 and 33. While the compounds do not act directly on HHKs, microarray analysis showed that compound 13 induced transcripts associated with oxidative stress, and compound 33, transcripts linked with heavy metal stress. Both compounds were highly active against C. albicans biofilm, in vitro and in vivo, and exerted synergy with fluconazole, which was inactive alone. Thus, we identified potent, broad-spectrum antifungal drug leads from a small molecule screen using a high-throughput, S. cerevisiae reporter bioassay

    Managing uncertainty: a review of food system scenario analysis and modelling

    Get PDF
    Complex socio-ecological systems like the food system are unpredictable, especially to long-term horizons such as 2050. In order to manage this uncertainty, scenario analysis has been used in conjunction with food system models to explore plausible future outcomes. Food system scenarios use a diversity of scenario types and modelling approaches determined by the purpose of the exercise and by technical, methodological and epistemological constraints. Our case studies do not suggest Malthusian futures for a projected global population of 9 billion in 2050; but international trade will be a crucial determinant of outcomes; and the concept of sustainability across the dimensions of the food system has been inadequately explored so far. The impact of scenario analysis at a global scale could be strengthened with participatory processes involving key actors at other geographical scales. Food system models are valuable in managing existing knowledge on system behaviour and ensuring the credibility of qualitative stories but they are limited by current datasets for global crop production and trade, land use and hydrology. Climate change is likely to challenge the adaptive capacity of agricultural production and there are important knowledge gaps for modelling research to address

    Solvent-selective routing for centrifugally automated solid-phase purification of RNA

    Get PDF
    The final publication is available at Springer via https://doi.org/10.1007/s10404-014-1477-9.We present a disc-based module for rotationally controlled solid-phase purification of RNA from cell lysate. To this end, multi-stage routing of a sequence of aqueous and organic liquids into designated waste and elution reservoirs is implemented by a network of strategically placed, solvent-selective composite valves. Using a bead-based stationary phase at the entrance of the router, we show that total RNA is purified with high integrity from cultured MCF7 and T47D cell lines, human leucocytes and Haemophilus influenzae cell lysates. Furthermore, we demonstrate the broad applicability of the device through the in vitro amplification of RNA purified on-disc using RT-PCR and NASBA. Our novel router will be at the pivot of a forthcoming, fully integrated and automated sample preparation system for RNA-based analysis.Peer reviewe

    Cation insertion to break the activity/stability relationship for highly active oxygen evolution reaction catalyst

    Get PDF
    The production of hydrogen at a large scale by the environmentally-friendly electrolysis process is currently hampered by the slow kinetics of the oxygen evolution reaction (OER). We report a solid electrocatalyst α-Li2IrO3 which upon oxidation/delithiation chemically reacts with water to form a hydrated birnessite phase, the OER activity of which is five times greater than its non-reacted counterpart. This reaction enlists a bulk redox process during which hydrated potassium ions from the alkaline electrolyte are inserted into the structure while water is oxidized and oxygen evolved. This singular charge balance process for which the electrocatalyst is solid but the reaction is homogeneous in nature allows stabilizing the surface of the catalyst while ensuring stable OER performances, thus breaking the activity/stability tradeoff normally encountered for OER catalysts

    The medicalization of current educational research and its effects on education policy and school reforms

    Get PDF
    Este artículo parte del supuesto de la aparición de una cultura pedagogizada durante los últimos 200 años, según la cual los problemas sociales percibidos se traducen en desafíos educativos. En consecuencia, tanto la investigación como las instituciones educativas crecieron, y una política educativa surgió como resultado de las negociaciones entre los profesionales, los investigadores y los responsables políticos. El documento mantiene que algunas experiencias específicas ocurridas durante la Segunda Guerra Mundial, provocaron un cambio fundamental en el papel social y cultural de los círculos académicos, que condujo a una cultura tecnocrática caracterizada por una mayor confianza mostrada hacia los expertos en lugar de a la práctica profesional (es decir, los maestros y administradores). Bajo este cambio tecnocrático, en primer lugar surgió un sistema tecnológico de razonamiento, que luego fue sustituido por un “paradigma” médico. El nuevo paradigma condujo a una medicalización de la investigación social, en el cual se da por sentado un particular entendimiento organicista de la realidad social, y su investigación se realiza bajo las más discutibles premisas. El resultado es que pese a la creciente importancia de la investigación en general, este cambio expertocrático y médico de la investigación social dio lugar a una reducción drástica de las oportunidades reformistas al privar a las partes interesadas de una amplia gama de investigación educativa, experiencia profesional, sentido común, y debate político.This paper starts from the assumption of the emergence of an educationalized culture over the last 200 years according to which perceived social problems are translated into educational challenges. As a result, both educational institutions and educational research grew, and educational policy resulted from negotiations between professionals, researchers, and policy makers. The paper argues that specific experiences in the Second World War triggered a fundamental shift in the social and cultural role of academia, leading up to a technocratic culture characterized by confidence in experts rather than in practicing professionals (i.e., teachers and administrators). In this technocratic shift, first a technological system of reasoning emerged, and it was then replaced by a medical “paradigm.” The new paradigm led to a medicalization of social research, in which a particular organistic understanding of the social reality is taken for granted and research is conducted under the mostly undiscussed premises of this particular understanding. The result is that despite the increased importance of research in general, this expertocratic and medical shift of social research led to a massive reduction in reform opportunities by depriving the reform stakeholders of abroad range of education research, professional experience, common sense, and political deliberation.Grupo FORCE (HUM-386). Departamento de Didáctica y Organización Escolar de la Universidad de Granad

    Oxygen redox chemistry without excess alkali-metal ions in Na2/3_{2/3}[Mg0.28_{0.28}Mn0.72_{0.72}]O2_2

    Get PDF
    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2pp orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li+^+–O(2pp)–Li+^+ interactions). Na2/3_{2/3}[Mg0.28_{0.28}Mn0.72_{0.72}]O2_2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg2+^{2+} resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na2/3_{2/3}[Mg0.28_{0.28}Mn0.72_{0.72}]O2_2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg2+^{2+} remains in Na2/3_{2/3}[Mg0.28_{0.28}Mn0.72_{0.72}]O2_2, which stabilizes oxygen
    corecore