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Abstract We present a disc-based module for rota-

tionally controlled solid-phase purification of RNA from

cell lysate. To this end, multi-stage routing of a se-

quence of aqueous and organic liquids into designated

waste and elution reservoirs is implemented by a net-

work of strategically placed, solvent-selective compos-

ite valves. Using a bead-based stationary phase at the

entrance of the router, we show that total RNA is puri-

fied with high integrity from cultured MCF7 and T47D
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cell lines, human leukocytes and Haemophilus influen-

zae cell lysates. Furthermore, we demonstrate the broad

applicability of the device through the in vitro ampli-

fication of RNA purified on-disc using RT-PCR and

NASBA. Our novel router will be at the pivot of a forth-

coming, fully integrated and automated sample prepa-

ration system for RNA-based analysis.

Keywords Lab-on-a-disc · RNA purification ·
Solvent-selective valves · Molecular diagnostics

1 Introduction

Microfluidic lab-on-a-chip technologies have been shown

to automate and reduce the time-to-result of a wealth

of bioanalytical assays, and ultimately enable their de-

ployment at the point of need. Whilst a range of de-

tection techniques remains implemented on-chip, the

integration of sample preparation with detection has

been a bottleneck in the development of microfluidic

devices for nucleic acid testing (Foudeh et al., 2012;

McCalla and Tripathi, 2011). In many instances, RNA

is a preferable diagnostics target, such as the detec-

tion of retro viruses or in the expression analysis of

genes. Also, in assays for the detection of pathogens,

RNA can be used to obtain information on pathogen

viability as RNA is less stable than the DNA. Fur-

thermore, since RNA molecules are typically present

in multi-copy (100s-1000s/per cell), the potential for

detection without in vitro enzymatic amplification is

possible. One such class of RNA species that have re-

cently received attention for their diagnostic potential

are micro-RNAs (miRNAs). miRNAs are small non-

coding RNAs that are involved in modulating gene ex-

pression at the transcriptional and post transcriptional
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level. Their dysregulation has been shown to be associ-

ated with a wide variety of human diseases, including

cancer (Mitchell et al., 2008; Heneghan et al., 2010),

diabetes and cardiovascular diseases. In terms of bacte-

rial RNA diagnostics, ribosomal RNA (rRNA) and in

particular 16S rRNA remains the gold standard. Other

functional high-copy number bacterial RNA molecules

such as transfer messenger RNA (tmRNA) encoded by

the ssrA gene has been demonstrated be a useful marker

in bacterial diagnostics (O’Grady et al., 2009; Clancy

et al., 2012).

The automation of microfluidic platforms often in-

volves the use of costly peripheral equipment, such as

syringe pumps, external valves and pressure controllers.

These chip in a lab devices require complex, multi-

stage off-chip liquid handling steps, thereby severely

limiting their wide spread adoption in clinical testing.

Centrifugal microfluidic Lab-on-a-Disc (LoaD) systems

bear the potential to integrate sample preparation with

detection to create full-fledged sample-to-answer de-

vices (Madou et al., 2006; Ducrée et al., 2007). A simple

rotary microsystem developed by Park et al. (2012a),

enabled the purification of RNA from viral lysate with

frequency controlled release of reagents. Using centrifu-

gal micro-fluidics, Cho et al. presented a device capable

of one-step DNA extraction of pathogen-specific DNA

from whole blood (Cho et al., 2007). Also multiplexing

of immunoassays on-disc (Lee et al., 2009; Park et al.,

2012) and parallelized biochemical analysis (Lee et al.,

2011) have been demonstrated.

As all liquids resident on the disc are simultaneously

exposed to the same centrifugal field, valving technolo-

gies are pivotal for establishing a sequence of liquid

handling steps. Over the years the scientific community

has pioneered a repertoire of valving schemes, which are

commensurate with the rotational nature of the lab-on-

a-disc platform. Amongst the central aspects governing

the choice of the valving scheme are the upper limit of

tolerable spin frequencies (e.g. during multi-stage sam-

ple prep), the open-state hydrodynamic resistance and

vapour barrier properties (e.g. for storage and release

of liquid reagents) on behalf of flow control and the

complexities involved in fabrication and actuation on

the hardware side. Valve actuation on LoaD platforms

can be categorized into two schemes; the first type of

valve is controlled by the system-innate spindle mo-

tor such as capillary burst valves (Ducrée et al., 2007;

Zoval and Madou, 2004) or siphons (Schembri et al.,

1995; Steigert et al., 2007; Nwankire et al., 2013); the

alternative, externally actuated schemes often involve

the manipulation of a sacrificial material by an exter-

nal stimulus like heat, for instance, thermally-actuated

wax valves (Park et al., 2007). Recent reports have uti-

lized such wax valves for the on-disc integration of bio-

chemical and immunoassays (Lee et al., 2009, 2011).

To avoid the manufacturing complexity of incorporat-

ing on-disc heat induced valves, Mark et al. (2008) in-

troduced a pneumatic microvalve using a thin burstable

foil. Zehnle et al. (2012) swiftly balance the pressures on

spinning disc, and use the advancing liquid as a valve to

achieve inward pumping. In another study, Gorkin III et

al. (2012) integrated water-dissolvable films as once-off

valve seals. By trapping air between this dissolvable film

and the liquid they implemented centrifugo-pneumatic

valving and gating of on-board-stored reagents for a

wide range of burst frequencies. We expand upon these

dissolvable film valves and develop automated, solvent-

selective routing on a LoaD platform.

For solid-phase purification (SPP) of nucleic acids,

we here exploit the well-established Boom chemistry

(Boom et al., 1990). Fluidic routing to direct flow to a

selected output at a bifurcation between a waste and an

elution outlet is critical for centrifugally implemented

automation. Kim et al. (2008) developed a flow switch

by using a capillary valve upstream of an open cham-

ber and unique 3D junction geometry. A similar router,

solely controlled by the rotationally actuated hydrody-

namic Coriolis pseudo force, was reported by Brenner

et al. (2005). This virtual routing concept was further

sophisticated by Haeberle et al. (2007) who successfully

extracted DNA from calf thymus using silica beads by

alternating the sense of rotation. Based on a droplet

deflection Coriolis-force driven router they recovered

16% of the initial nucleic acid. A recent study by Seo

reports 81% capture efficiency of RNA from lysed in-

fluenza A H3N2 virus using silane, i.e. TEOS treated

glass beads on-disc (Seo et al., 2013). Alternatively,

100% efficient automated extraction of human genomic

DNA is demonstrated by Kloke et al. (2014) who im-

plement novel ball-pen piercable seals to route the sam-

ple lysate through integrated silica membrane in a Lab

Tube platform. Whilst these systems have contributed

greatly to the development of SPP, to date, reliable,

high-efficiency and low-complexity routing of flows (e.g.

aqueous or organic flows) on LoaD platforms still re-

mains a challenge.

We report a routing scheme which utilizes solvent-

selective valving with unidirectional rotational actua-

tion for SPP of RNA, thereby obviating the need for

external actuation other than the system-inherent spin-

ning rates. Previously Kinahan et al. (2014) success-

fully achieved solid phase purification of total RNA

from MCF7 cell lysates. Multiple dissolvable film valv-

ing strategies were presented, which allowed inbuilt con-

trol of reagent release for automated sample prepara-

tion and integration of laboratory unit operations on
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LoaD at constant angular velocity. However, the article

briefly touches on the quality of the purified samples

and the mechanisms of routing. In contrast, here we

investigate solid phase purification of RNA from vari-

ous cells, study the suitability of the method for further

downstream amplifications, and expand on the selective

routing through integrated hydrophobic membrane and

dissolvable film valves. Our findings will be at the core

of a future, fully automated centrifugal microfluidic nu-

cleic acid analyzer.

2 Principle of operation

This paper addresses the missing link between upstream,

chemically induced cell lysis and 3-phase RNA extrac-

tion and downstream nucleic acid analysis techniques

which are both well established bench-top methods that

have also been demonstrated microfluidicly using lab-

on-a-chip / lab-on-a-disc systems (Linares et al., 2011).

The single step acid guanidinium thiocyanate phenol-

chloroform method, also known as 3-phase RNA ex-

traction, is based on the discovery that RNA (other

than DNA and proteins) remains soluble in the acidic

aqueous phase (Brenner et al., 2005; Chomczynski and

Sacchi, 1987). Formulations of acidic guanidinium thio-

cyanate and phenol are commercially available under

various brand names (TRIzol from LifeTechnologies,

TRI Reagent from Sigma). In general, the reagent con-

tains phenol that ruptures the cells and guanidinium

thiocyanate, a chaotropic salt that strips protein com-

plexes from RNA. The addition of chloroform (or an

alternative reagent such as 4-bromoanisole or 1-Bromo-

3-chloropropane), prior to centrifugation permits the

separation of the non-polar (organic) and polar (aque-

ous) phases. Due to differences in their solubility, DNA

is retained in the organic phase whilst the RNA is con-

centrated in the aqueous phase, which also contains

salt contamination. For accurate downstream analysis

of RNA, it is essential that extracted RNA is free of con-

taminants such as chaotropic salts and phenol (Bustin

and Nolan, 2004; Tan and Yiap, 2009).

Here we convey the centrifugal microfluidic automa-

tion of a 4-stage purification of RNA from the aqueous

phase of TRI Reagent lysed human and bacterial cells.

Using human MCF7 breast cancer cells, we validate the

device. Subsequently, we demonstrate the applicabil-

ity of the device for nucleic acid diagnostics with the

in vitro enzymatic amplification of miRNAs from cul-

tured T47D cells and human leucocytes using RT-PCR.

Furthermore, using Nucleic Acid Based Amplification

(NASBA) we demonstrate the utility of the device for

bacterial molecular diagnostics using H. influenzae as

a model organism.

Fig. 1 Routing of flows based on solvent-specific valves in bi-
furcated microchannels: Assembly of composite tabs for Hy-
drophobic Membrane (HM, a) and Dissolvable Film (DF, b)
valves using Pressure Sensitive Adhesive (PSA). c) Proof of
principle for routing of sequentially loaded aqueous (left) and
organic (IPA, right) solvents into designated collection cham-
bers using the HM tab in a simple, inverse-Y structure. As
the HMV is impermeable to the first aqueous phase, and the
flow deflects through the open channel into the right collec-
tion chamber (panels 1 and 2). On the contrary, the second
(organic) liquid IPA wets the membrane and flows in the left
hand-side chamber as the flow resistance of the outlet, gov-
erned by the larger cross-section and length of the vertical
outlet, is significantly smaller than the flow resistance of the
tiny channel leading to the alternative right outlet (panel 3
4). d) Schematic of the fluidic capacitance, dissolution of the
DF (yellow), and routing of the aqueous flows, Pini is the at-
mospheric pressure, Vini is the volume of the lateral channel
and P with V are their centrifugally compressed counterparts.
The axis of rotation are denoted by ⊗ above each panel.

First we demonstrate the underlying principle of

solvent-selective routing (Fig. 1). By strategically plac-

ing two solvent-selective valve types (Fig. 1a and b) in a

simple microfluidic network, inverse-Y bifurcation con-

necting an inner loading chamber to two outlets (Fig. 1c

and d). Within the 3-dimensional (3D) disc architec-

ture similar to an earlier reported system (Gorkin III

et al., 2012), we placed the two outgoing channels in

separate layers. These channels communicate via a ver-

tical through hole which is initially sealed by a solvent-

selective film, in this case a hydrophobic, PTFE sup-

ported membrane valve (HMV) (Fig. 1a and c) which

becomes permeable upon exposure to organic solvents.

As the HMV is impermeable to aqueous solutions, the

first aqueous flow is routed through a narrow channel

to the right collection chamber (Fig. 1c, 1-2). However,

the HMV is permeable for the subsequent organic so-

lution (Fig. 1c, 3-4), which has thus two options for
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exiting. The outflow into the left reservoir can be bi-

ased by a lower flow resistance, e.g. through a shorter

connection channel with a larger cross section compared

to the other outlet.

In addition, the centrifugally stabilized liquid vol-

ume already resident in the right outlet blocks all vents,

thus acting akin to a solid plug to practically create a

dead-end channel. The system can be simplified because

both liquids, e.g. aqueous solutions, have identical con-

tact angles with the channel walls and the channel has

uniform cross-section on both sides of the air pocket.

For the sake of clarity we hence neglect capillary and in-

ertial effects, so the flow into the right outlet will hence

stop once the pressure in the interspersed air pocket

balances the centrifugal pressure exerted by the incom-

ing liquid.

The air pocket thus acts as a fluidic capacitance

(Kim et al., 2008) where the final pressure of the air

pocket Pini · (Vini/V ) depends on the initial (typically

atmospheric) pressure Pini and the ratio of the initial

and final volumes Vini and V , respectively (Fig. 1d).

The flow in the lateral channel stops once the pressure

in the air pocket equilibrates the centrifugally induced

pressure ρω2r̄∆r with the liquid density ρ, the angular

frequency ω , the radial length r̄ and the mean posi-

tion ∆r of the incoming liquid plug. So essentially, the

here considered routing function is tightly linked to the

sequence of liquids and sealing the air pocket formed

between the advancing and the stationary liquids.

We integrate a bench-top method starting with: (i)

loading the aqueous lysate, (ii) isopropanol (IPA) me-

diated RNA precipitation from the aqueous phase, fol-

lowed by (iii) washing with ethanol (EtOH) and even-

tual (iv) resuspension of the purified RNA in aqueous

buffer. A glass bead solid-phase support is utilized to

enhance the purification efficiency of the system. To

implement the automated routing of two organic sol-

vents between a first and last aqueous phases, we es-

tablished a sequence of a HMV and a DF valve (with

an interspersed siphon) realized by the tab structures

outlined in Fig. 1. The valves were assembled into a

tab structure using two pieces of pressure sensitive ad-

hesive (PSA) (Fig. 1a and b). The full router in Fig. 2

displays four chambers for: loading of the solid phase,

sample and reagents (chamber L), the aqueous (Waq)

and organic waste (Worg) and for eluate containing the

purified RNA (Eaq) in the final step of the solid-phase

purification. Within the loading chamber we placed a

baffle with laser ablated, 100 µm wide radial grooves

(Fig. 2a) to geometrically retain the glass beads (≤ 106

µm) under the impact of the centrifugal flow. With its

microporous (pore size 0.45 µm) PTFE barrier, the first

HMV blocks the aqueous sample and eluate (Fig. 2b, e)

while providing passage of the organic solvents (Fig. 2c,

d). These organic phases are both directed to their des-

ignated waste (Worg), which is the hydrodynamically

preferred, axial outlet of the open-channel situation on

the centrifugal platform.

Fig. 2 Fluidic tests of the router. (a) Schematic of the device
showing the loading chamber (L), the organic and aqueous
waste Worg and Waq, respectively, the collection chamber
for the eluate Eaq containing the purified total RNA and the
Hydrophobic Membrane Valve (HMV) and dissolvable film
(DFV) valves. The inset on the left shows a magnified view
of the baffle that holds the glass beads; the inset on the right
shows the assembled disc with the final distribution of liquids;
(b) Flow from L designated to Waq. The initially closed DFV
is actuated open by the flow. (c) 60 µL of IPA flow from L
into Worg, as the HMV is permeable to organic solutions.
(d) 60 µL of EtOH from L to Worg. (e) & (f) Routing of the
elution buffer from L into Eaq as the HMV is impermeable
to water and DFV is open. Summary of this test is available
in Online Resource 1. Note that Waq and in particular Eaq

remain free of organic, which is essential for the quality of the
extracted RNA.

The hydrophilic siphon, downstream from the load-

ing chamber, lets the aqueous fraction pass at reduced

spin rates, while it holds back subsequent IPA and EtOH

before the crest point at increased rates until they are

fully diverted into Worg. Organic solutions are there-

fore effectively restricted to the loading chamber, solid

phase and ascending siphon arm. The siphon thus mini-

mizes the risk of critical cross-contamination of the elu-

tion reservoir Eaq with organic solvents. Following this

intermediate, organic routing phase, we intersperse a

drying period for the previously primed channels and

membranes, which could be enhanced by centrifugation

(Garcia-Cordero et al., 2010). Again the most crucial

factor for a subsequent molecular amplification step is
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that Eaq remains free of potential contaminants from

preceding solutions.

In the final step, the aqueous elution buffer desorbs

the RNA bound to the solid phase. After passing the

hydrophilic siphon during slow spinning, the RNA de-

pleted sample (Fig. 2b) and the elution buffer (Fig. 2e,

f) are diverted in a binary fashion to the aqueous waste

(Waq) and the elution chamber (Eaq), respectively. To

this end a normally-closed (water) dissolvable-film valve

(DFV) initially seals the radial outlet to route the liq-

uid into Waq. Once in contact with the valve, the first

liquid initiates the timed dissolution of the thin film

so the DFV is opened to direct the subsequent elu-

tion buffer to its destination Eaq. Additionally, the Hy-

drophobic Membrane (HM) covering the outlet of the

aqueous waste (Waq), denoted in Fig. 2b, prevents leak-

age while venting the chamber. Thus the HM retains

the RNA depleted fraction and maintains the air pocket

with the advancing aqueous elution buffer. Contact be-

tween the two liquids is averted because of the fluid

capacitance, i.e. pressure equilibrium on the two sides

of the air pocket (Fig. 2e, f). In total, the router utilizes

four phase-selective valves (HMV, hydrophilic siphon,

DFV and HM) with different functionalities that allow

automated sample purification without exposure of the

eluted RNA to preceding flows.

The centrifugal microfluidic SPP with this solvent-

selective router is based on the following protocol: first,

the crude aqueous extract from a homogenized bio-

logical sample is introduced onto the beads inside the

loading chamber (Fig. 2b). The RNA from the solu-

tion binds to the acid-washed glass beads as a result of

charge-charge interactions under chaotropic conditions
(Boom et al., 1990). Using a specific spin frequency, the

RNA-depleted fraction is delivered through the siphon

into Waq. The flow disintegrates the thin film so the

DFV is open to route the subsequent elution buffer

into Eaq. Next, the disc is stopped and IPA is pipet-

ted into the loading chamber (L) to precipitate any

remaining unbound RNA (Fig. 2c). A small volume of

the RNA depleted aqueous solution remains trapped

in the channel prior to the siphon crest. Both, its flow

resistance and the wettability of the PTFE supported

membrane make the HMV impermeable for water, even

at high rotational frequencies (75 Hz). As long as the

pressure drop across the membrane is lower than the

minimum pressure required to drive all of the permeate

phase through the membrane (Adamo et al., 2013), the

HMV remains closed. Once the IPA is introduced onto

disc and is in contact with the HMV pores, it passes

through the PTFE supported membrane. According to

the supplier, organic solvents, IPA in this case, changes

the membrane permeability and thus gates the RNA de-

pleted aqueous solution through the pores of the HMV

into the organic waste. The high angular velocity (75

Hz) guarantees that IPA does not shoot over the crest

of the siphon, which is a low-frequency pass valve. Such

HMV permeability facilitates the emptying of the chan-

nel, prior to the siphon crest, into the Worg and pre-

vents transfer of the high-salt concentration solution to

the elution chamber (Eaq). The lost volume does not

influence the extraction efficiency as the RNA has been

retained on the solid phase prior to the treatment with

IPA. It takes approximately 3.5 minutes at spin fre-

quency 75 Hz for the membrane to open as the RNA

depleted solution prevents the IPA from direct contact

with the HMV. This is the time required for the the IPA

to reach the PTFE membrane through the channel at

that given spin rate. Using a solvent with higher misci-

bility would accelerate the processing time. Therefore,

the time required to open the HMV is solvent specific,

and it also depends on the geometry of the upstream

channel, spin rate and intrinsic properties (pore size,

contact angle) of the integrated PTFE filter. EtOH is

consecutively loaded that rinses away salts from the

beads and the precipitated polynucletides (Fig. 2d), and

also residues from the pre-crest channel region. During

the drying period, as the EtOH evaporates from the

pores of the PTFE supported membrane, the valve re-

turns to its normally closed state. Hence, allows the

elution buffer to pass by undisturbed the HMV at low

rotational frequencies over the siphon crest into Eaq.

Finally, 100 µL of aqueous elution buffer is introduced

and driven at at lower frequencies (7.5 Hz) through the

solid phase where it retrieves the purified RNA, then

past the HMV over the siphon crest and through the

now open DFV and vertical channel into the Eaq reser-

voir (Fig. 2e).

3 Materials and methods

Glass beads, acid washed (≤106 µm), absolute ethanol,

isopropanol, Phosphase Buffered Saline (PBS), Pres-

sure Sensitive Adhesive (PSA, Adhesive Research Inc.,

Ireland), polymethyl methacrylate (PMMA) sheets (Evonik

Industries AG, UK), dissolvable film (FA36, Harke Pack-

Pro, Germany), hydrophobic membrane (PTFE mem-

brane circles, 0.45-µm pore diameter, Whatman), DI

water (TKA, Germany), Nuclease free water (VWR,

UK), RNAase ZAP (Biosciences, Ireland), TRI Reagent,

4-bromoanisole (Bio-Science). All reagents listed above

were obtained from Sigma-Aldrich unless otherwise stated.
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3.1 Valve assembly

These valves were assembled into a tab structure using

two pieces of PSA (Fig. 1a, b). First, the flow-through

region in a tab was cut out from the PSA using a pre-

cision knife cutter (Graphtec, Yokohama, Japan). The

protective foil was peeled off the PSA and either a hy-

drophobic membrane (HM) or a water-dissolvable film

(DF) was stacked on the surface (Fig. 1a, b). The excess

material was cut off and removed without penetrating

the DF layer. A final cut through the PSA defined the

tab size. To improve the mechanical stability of the fluid

exposed area, a second PSA layer covered the HM/DF

at the top.

3.2 Fabrication and assembly of the disc

The device consisted of three PMMA discs (φ120 mm

x φ15 mm x 1.5 mm) and two binding PSA layers

(Fig. 3). Each disc was cut to size and processed on

a CO2 laser (Epilog Zing, US): the bottom disc had

its draining channels ablated; in the middle disc liquid

loading channels and collection chambers were cut out.

Additionally in the middle disc connecting channels,

siphons and valve grooves were CNC milled (MDX-40

Rolland, UK) into the backside. Inlets and outlet via-

wholes were ablated in the top disc. All three discs were

sonicated in 2% aq. soln. Micro 90 (International Prod-

ucts Corp., US) for 30 min at 50◦C. The discs were then

transferred in DI water and sonicated under the same

conditions for another 30 min. Finally, the discs were

heat-dried at 80◦C for 45 min.

Prior to disc assembly, the work area on the bench

was decontaminated using RNAse ZAP and cleaned

with 70% IPA. Valves were placed in their designated

grooves in the middle disc. Intermittent layers of PSA

with the cut out silhouettes (Graphtec, Yokohama, Japan)

of all chambers and channels were aligned with their

contour parts on the PMMA discs using a bespoke

assembly rig. The assembled device was passed mul-

tiple times through a roller press (Hot Roll Laminator,

Chemsultant Int., US) to reinforce the bonds of the five-

layer structure. Finally, 30 mg of acid-washed, dried

glass beads was introduced to the loading chamber L.

3.3 MCF7 cell culture

All cell culture reagents were obtained from Sigma-

Aldrich (MO, USA) unless otherwise stated, MCF7 cells

(DSMZ, Braunschweig, Germany) were cultured in 75

cm3 flasks in DMEM media, supplemented with 10% fe-

tal bovine serum (FBS), 100 U mL−1 penicillin and 100

Fig. 3 Exploded view of the disc assembly. The bottom
PMMA disc (OD 120 mm x ID 15 mm x 1.5 mm) with
laser ablated draining channels was bonded through a bot-
tom pressure sensitive adhesive (86 µm, PSA) to the middle
disc, which hosted the loading, collection chambers, as well
as milled channels and valve beds. The channels had uniform
square cross-section (0.5 mm x 0.5 mm) and were fabricated
by precision milling (MDX40, Roland, UK) on the upper side
of the disc. While the valve beds (OD 6 mm, Depth 0.6 mm)
were milled from the backside. Top PSA layer with silhouettes
of the channels and chambers bonded the stack of to the top
PMMA disc, which sealed close the chambers and the chan-
nels. Two pins and an assembly rig were used to align all the
structures.

µg mL−1 streptomycin. The cultures were maintained

at 37◦C with 5% CO2. Cells were harvested by incuba-

tion in 5 mL 0.25% trypsin / 0.1% EDTA at 37◦C for

5 minutes followed by neutralization with 5 mL culture

medium. Cells were centrifuged at 300 x g for 4 min and

resuspended in culture medium. The cells used in this

study were collected between their 17 and 25 passages.

3.4 T47D cell culture

The ductal breast cancer (T47D) cells were cultured in

RPMI-1640 supplemented with 0.2 U mL−1 bovine in-

sulin and FBS to a final concentration of 10% at 37◦C in

5% CO2. Cells were harvested by incubation in trypsin

- EDTA solution at 37◦C for 5 minutes followed by

neutralization with 5 mL culture medium. Cells were

counted, and centrifuged at 300 x g for 4 min to pellet

the cells.



RNA purification on-disc 7

3.5 Haemophilus influenza growth conditions

H. influenzae (DSMZ 4690) was cultured overnight in

haemophilus test medium (HTM, Oxoid, UK). The fol-

lowing morning, a new culture (10 mL) was inoculated

with a 100 µL overnight culture aliquot and allowed to

grow to exponential phase (4 hrs). Cells were harvested,

the optical density of the culture was measured at 600

nm and compared to a previously generated growth

curve. Cells were diluted in HTM to 1 x 107 cells /

mL and pelleted.

3.6 Leukocyte preparation

Human whole blood was obtained from a healthy male

volunteer. The leukocyte fraction was isolated by gradi-

ent density centrifugation using Ficoll paque plus (GE

Life Sciences) according to the manufacturers instruc-

tions. The cells were washed twice in 1 x PBS and pel-

leted.

3.7 Bench-top cell lysis and RNA extraction with TRI

Reagent

Cells were lysed by mixing a 25 µL aliquot of har-

vested cells in culture media (DMEM, FBS, penicillin

and streptomycin) with 80 µL TRI Reagent. The aliquots

contained 2.96 x 105 - 7.4 x 104 MCF7 cells. The cells

were enumerated by an automated cell counter (Scepter

Handheld, Millipore, US) and in a hematocrit chamber

(depth 0.1 mm, Marienfeld, Germany). For all other

cell types (T47D, H. influenzae and leukocytes), the

cell pellet was resuspended in a mixture containing 80

µL TRI Reagent and 25 µL nuclease free water. To each

sample, 5 µL of 4-bromoanisole was added. The mixture

was then vortexed for 1 min and incubated for 9 min

at room temperature prior to purification. All samples

were then centrifuged at 14000 x g for 5 min at room

temperature and the aqueous phase was removed for

on-disc purification.

3.8 Measuring the contact angle between PMMA and

aqueous cell homogenate

Following lysis, 60 µL of the aqueous phase was col-

lected, and an equal volume of water was added. From

this, a 1-µL aliquot was placed on a clean, dry PMMA

surface (n = 5) and images of the sitting droplets were

acquired. The contact angles were calculated using the

tangential method from the built-in software of the go-

niometer (DataPhysics Instruments GmbH, Germany).

The hydrophilic siphon design (Online Resource 2) was

calculated based on this data.

3.9 Bead-based total RNA purification on-disc

The use of silica based substrates in combination with

chaotropic salts to purify nucleic acids has been widely

implemented (Boom et al., 1990). Under basic and near

neutral pH the silanol groups on glass or silica surfaces

are negatively charged (Wen et al., 2008) due to their

pKa of 5-7. In spite of the pKa, charge-charge interac-

tions can take place in high salt concentration solution.

Also, strong ionic conditions (NaCl) and lower pH (pH

= 5) can mask native hydroxyl negative charges and

permit binding of the RNA. In the protocol we imple-

ment here, the chaotropic salt from the TRI reagent

compensates the anionic charges by removing water

molecules from both glass and nucleotides. To strip the

beads of the bound RNA, a low ionic strength buffer at

near neutral pH 8.1 is used.

On-disc, 30 mg of dry acid-washed glass beads were

introduced into the main chamber. Next, 120 µL of

cell lysate mix with water (1:1, aq. phase: water) was

loaded. The mixture was incubated for 5 min on a

stationary disc to enable RNA binding to the beads.

The beads were then subjected to two sequential wash-

ing steps with 60 µL of 100% IPA and 60 µL of 75%

ethanol aqueous solution (EtOH). Finally, the purified

RNA was retrieved from the beads with the addition

of 100 µL elution buffer (50 mM Tris-HCl, 1 x EDTA

at pH 8.1). The liquids were automatically collected in

designated chambers (Fig. 2 and ESM-1). The entire

volume of the eluted fraction (100 µL) was recovered

from the collection chamber (Eaq) and analyzed.

3.10 Measuring the concentration, purity and integrity

of extracted RNA

The concentration and integrity of the purified total

RNA was determined by capillary electrophoresis (RNA

6000 Pico kit, Bioanalyzer 2100, Agilent technologies,

US) according to the manufacturers’ instructions. The

quality of the purified RNA was assessed by the RIN

(RNA Integrity Number) provided by a build-in algo-

rithm of the Agilent Expert Software. The RIN algo-

rithm analyzes the entire electrophoretic trace origi-

nating from an RNA sample. First, to determine if

RIN could be calculated, depending on important el-

ements of the electropherogram such as the Pre region,

5S region, Fast region, Inter region and Past region are

evaluated. If a critical anomaly is detected in any of
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these regions, the RIN is not computed. Baseline cor-

rection and normalization are automatically applied to

each electropherogram prior to the feature extraction.

Then, based on Bayesian learning technique, the algo-

rithm builds regression models using indicated peak po-

sitions, heights, areas, area ratios, S/N ratio, maximum

and minimum values, and waviness of the electrophero-

gram trace to assign a 1 to 10 score (Schroeder et al.,

2006). RIN score of 1 means the sample is degraded,

and 10 scores for completely intact RNA. According to

the description of Agilent, the RIN algorithm is devel-

oped to utilize neural networks and adaptive learning

in conjunction with a large database of eukaryote total

RNA samples, and the RIN score is largely indepen-

dent of the amount of RNA used and the origin of the

sample.

3.11 RT-PCR amplification

The microRNAs, miR-16 and miR-195 were reverse tran-

scribed using miRNA specific stem loop primers (Life

Technologies) and the TaqMan R© MicroRNA reverse

transcription kit (Life technologies). 1.33 µL of RT prod-

uct was subsequently amplified by PCR in a 20 µL reac-

tion using the TaqMan R© universal PCR master mix II

kit and miRNA specific primers and probes (Life Tech-

nologies) on a LightCycler 480 thermocycler (Roche).

3.12 NASBA amplification

The tmRNA transcript in RNA purified from H. in-

fluenzae was amplified in a real time NASBA reac-

tion using the NucliSENS EasyQ basic kit version 2

(bioMérieux, Lyon, France) on a LightCycler 2.0 ther-

mocycler (Roche) using the primers (5-3) P1; AATTCT-

AATACGACTCACTATAGGGAGAAGGCTTCGATC-

CTCAAACGGT, P2; GCAGCTTAATAACCT and a

molecular beacon 5’FAM-CCGAGTGGGGATAACGC-

GGAGTCAACTCGG 3’DAB (MWG Eurofins, Germany).

Each sample was amplified in a 20 µL reaction consist-

ing of 10 µL of NASBA reagent-primer mix, 5 µL of

RNA template, and 5 µL of the enzyme mixture (avian

myeloblastosis virus reverse transcriptase, RNase H, and

T7 RNA polymerase).

4 Results and discussion

4.1 Fluidic analysis

Liquid volumes, conditions and spin frequencies for each

stage of the purification procedure were experimentally

confirmed. The final spin frequency protocol for the pu-

rification is outlined in Figure 4. For total RNA, a 5-min

incubation period was necessary to enable the beads

to bind nucleic acids present in the sample. Another

5-min incubation period was required to provide suffi-

cient time for the RNA to elute from the beads into

the aqueous elution buffer in the reverse process. These

incubation times and elution conditions relate directly

to the properties of the solid phase and may vary for

different bead materials, e.g. silica (Wen et al., 2008;

Duarte et al., 2010) polystyrene (Duarte et al., 2011)

or chitosan (Kim et al., 2009b). One advantage of the

router presented in this work is that the solid phase

inside the loading chamber can be easily substituted,

e.g. to reduce the incubation times and/or increase the

extraction efficiencies.

Fig. 4 Spin frequencies of the disc versus time. The verti-
cal arrows on the horizontal axis indicate the four sequential
loading steps of sample, reagents and collection of the puri-
fied RNA. Simultaneous extraction of total RNA from four
samples was accomplished in less than 25 minutes.

It was determined that increasing the period of in-

cubation prior to elution further increased the extrac-

tion efficiency. The 5-min drying period (Fig. 4) facil-

itated the evaporation of any remaining EtOH from

the siphon. Drying of the siphon prior to the final elu-

tion step resulted in a stabilization of the contact angle

thereby preventing elution buffer from seeping over the

siphon crest, thus averting the elution buffer from mix-

ing with aqueous waste fraction.

4.2 On-disc RNA purification

To validate proper functioning of the on-disc SPP with

the solvent-selective router, we performed lysis and phase

separation on the bench of MCF7 cells with TRI Reagent,

and subsequent on-disc RNA purification from the aque-

ous phase obtained from the cell lysate. The electro-

pherograms obtained for different numbers of MCF7
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cells in Fig. 5 show that high quality RNA was recov-

ered from the eluted fraction.

Fig. 5 Electropherogram of the total RNA purified on-disc
from four different aliquots of MCF7 cells (a). Vertical lines
between 24-28 seconds designate the region of small RNA
(size range 30 to 200 nt). (b) Mean values and standard de-
viations from triplicate samples containing (red) 2.96 x 105,
(yellow) 1.48 x105, (light blue) 7.4 x 104, (blue) 3.7 x 104 of
MCF7 cells.

For the MCF7 RNA studied (n = 8), RIN values

were in the range of 7.2 to 9.2. An average of 16.8

ng was recovered from the 2.96 x 105 cells, which was

less than the 23.1 ng from 1.48 x 105 MCF7 cells. Evi-

dently, the cell number and the amount of ribosomal

RNA (18S and 28S) are not correlated as indicated

by the peak height variations in Fig. 5. We attribute

this to the experiments which are performed on dif-

ferent days using asynchronous cells from long-term

MCF7 line cultures, implying random fluctuations in

gene expression (Hiorns et al., 2004). However, the RIN

is the criterion used here to evaluate solid phase extrac-

tion and RNA quality on LoaD, which is in the scope

of the current article. Based on qualitative analysis of

the rRNA we conclude that the purified RNA has pre-

served high integrity after on-disc purification with the

solvent-specific router.

Further analysis indicates that the quantity of re-

covered small RNAs is proportional to the number of

cells in a starting sample. From the integrated area of

the peaks with migration time between 24 and 28 sec-

onds, the small RNA fraction was quantified for four

different cell concentrations. We focused on this re-

gion as many potential biomarkers have been identi-

fied as small RNAs (Iorio and Groce, 2012; Kosaka et

al., 2010). Figure 5 compares the purified small RNA

concentrations to cell content. The results suggest that

our LoaD platform is applicable for small RNA purifica-

tion from acid guanidinium isothiocyanate phenol lysed

samples in a quantitative manner.

The purification efficiency was further investigated

by comparing the RNA content from the purified (Eaq)

to the unbound (Waq) fractions. Our quantitative mea-

surements show that the RNA concentration is higher

in the purified fraction in comparison to the non-bound,

waste fraction. A concentration of 180 pg µL−1 was

measured in the purified fraction (100 µL), against 37

pg µL−1 (120 µL) in the waste fraction (Fig. 6). These

were also compared with the control sample, contain-

ing culture media only, where no RNA was detected,

demonstrating that the recovered RNA originated from

the cells and not from the growth media.

Fig. 6 Electropherograms showing the solid phase extraction
efficiency on-disc. Total RNA content was measured (Agi-
lent Bioanalyzer 2100) in samples collected from Eaq (green,
Fig.2), Waq (red, Fig.2) and control blank from the growth
media (black). The spectrum from the waste (red) is signifi-
cantly shifted to the left in relation to purified RNA spectrum
(green), which is due to the increased salt content (inhibiting
subsequent molecular amplification) in the Waq. This shift
is denoted with dashed lines and an arrow at the riboso-
mal (28S) peaks. The insert displays the bench-top extracted
sample using 2-propanol precipitation and the position of the
peaks of pure total RNA (blue).

Literature reports on-chip SPP efficiency for DNA

of 42.5% using static silica beads (Duarte et al., 2010).

Higher extraction efficiencies of 63.9% are achieved for

DNA using dynamic methods with magnetically induced

enhanced mixing (Duarte et al., 2011) and 71.0% for

RNA utilizing chitosan-coated beads on-chip (Hagan

et al., 2009) and recently 81.0% on-disc with (TEOS)-

treated glass beads (Seo et al., 2013) to capture RNA

from influenza (A H3N2) lysates with known concen-

trations.

As part of our study, bench-top extraction was per-

formed lysing 9.5 x 104 MCF7 cells, using IPA pre-
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cipitation and two consecutive washes with EtOH. We

measured total RNA of 32.3 ng from that sample. The

RNA recovered from an identical sample after on-disc

extraction resulted in 3.9 ng of total RNA. Assuming

that the bench-top extraction was 100% efficient, our

purification efficiency was 12.1% (weight) of extracted

total RNA from an identical sample utilizing a purifi-

cation protocol without beads. The percentage of pu-

rified RNA on-disc varied between samples with dif-

ferent cell counts. For the 1.48 x 105 cells 43% of the

total RNA was retained on the beads, from which 7.2%

was recovered from the elution fraction. Variations in

the packaging of the solid phase would inevitably lead

to fluctuations of the amount of recovered total RNA.

Even in a tightly packed monolith, diffusion of the RNA

molecules would act as a limiting factor. According to

the Einstein-Smoluchowski relation for one-dimensional

diffusion (x2 = 2·D·t) during the incubation time (5

min) an RNA molecule with diffusion constant of 10−7

cm2/s, for prokaryotic (16S) ribosomal RNA (Tam et

al., 1981), would only travel 7.7 µm. Introducing mix-

ing (Duarte et al., 2011) in the L chamber of the LoaD

system can increase the capture efficiency at the load-

ing stage. Further investigation and optimization of the

solid phase extraction protocol should follow in order to

further raise both the capture and elution efficiency of

total RNA.

A closer look at the electropherogram illustrated in

Fig. 6 reveals that the run time of the sample from Waq

is increased in relation to the typical migration times.

We attribute this behavior to residual salts in the Waq

chamber (Copois et al., 2007).

4.3 Assessment of on-disc RNA purity

To further investigate the presence of contaminants in

the eluted fraction, we sought to determine whether

salts and/or other contaminants would inhibit enzy-

matic amplification of RNA species present in the Eaq.

Nucleic acid modification enzymes and polymerases are

inhibited by organic species such as phenol (Katcher

and Schwartz, 1994), ethanol (Haggett et al., 2008) and

the presence of guanidinium salts. We therefore sought

to determine if on-disc purified RNA was amplifiable

by RT-PCR and NASBA. For RT-PCR, RNA was pu-

rified from the lysate of 1 x 105 T47D cells (Human

ductal breast epithelial tumor cell line) and the leuko-

cyte fraction from 1 mL of human whole blood. The mi-

croRNAs, miR-195 and miR-16 were first reverse tran-

scribed using a sequence specific primer and then ampli-

fied by real-time PCR. The comparison study between

the breast cancer related miR-195 and the housekeeping

miR-16 after RT-PCR were plotted in Figure 7.

Fig. 7 Comparison study of the RT-PCR amplified miR-16
and miR-195 after on disc or bench top purification. Panel (a)
shows the miR-16 and miR-195 purified from 1 x 105 T47D
Human ductal breast epithelial tumor cells, and in (b) the
leukocyte fraction of 1mL whole blood is presented.

In the RT-PCR the number of cycles needed for

the amplification-associated fluorescence to reach a spe-

cific threshold level of detection, called crossing point

value, is inversely correlated to the amount of nucleic

acid found in the original sample (Valasek and Repa,

2005). For the T47D cells, Cp values of 30.6 and 29.1
were obtained for miR-16 with on-disc and bench top

purified RNA, respectively. For miR-195, the Cp val-

ues were 27.4 and 25.3 for on-disc and bench purified

RNA, respectively (Figure 7a). This result indicates an

approximately 3-fold reduction in the quantity of both

miRNAs detected from disc purified RNA compared to

bench purified RNA. In the case of RNA purified from

leukocytes, the difference was even greater. For miR-16

there is a 600-fold reduction in the quantity detected

(9.2 cycles) and a 9-fold reduction (3.1 cycles) for miR-

195. Nonetheless, these results demonstrate that our

LoaD is capable of purifying small RNAs that are am-

plifiable from two different biological sample types.

One of the main questions in this study was whether

the system was capable of purifying RNA from different

organism types (human cells and bacteria) that could

be later used in various downstream analysis processes.

To further address this question, H. influenzae cells

were lysed, RNA purified on disc, and tested for quality

using NASBA amplification. The isothermal nature of
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the reaction lends it to point of care diagnostics. Whilst

the reaction is isothermal, it does require the simultane-

ous action of three enzymes to work. Figure 8 indicates

that the amount of RNA purified on-disc and amplified

is comparable to the bench-top purified RNA. It should

also be noted that the tmRNA transcript is 360 bases

in length, considerably longer than miRNAs.

Fig. 8 NASBA amplification of the tmRNA transcript from
total RNA purified from Haemophilus influenzae (107 cells)
on-disc and bench-top. Shown in green is the disc purified
RNA, blue is the bench purified RNA and gray represents
the no template control (NTC).

Preferential retention of tmRNA on disc should cor-

relate to the intrinsic properties of the system and/or

the extraction protocol. The literature described (Bal-

ladur et al., 1997) adsorption as a three-step mechanism

starting with (i) diffusion, in our case with convection,

from the solution to the surface, (ii) lateral diffusion

on the surface involving rearrangement of adsorbed en-

tities and (iii) adsorption/desorption equilibrium of the

molecules at the interface. The observed selectivity dur-

ing on-disc SPP could be explained in part by the cen-

trifugally induced flux, which forced the liquid through

the bead bed in the L chamber. At this initial stage

of the protocol, time is another factor. Though veloc-

ity and contact time contribute to the selective adsorp-

tion of tmRNA; in the authors opinion selectivity was

mainly governed by desorption. For instance, constant

angular velocity under similar experimental conditions

resulted in higher recovery of total RNA from MCF7

cells (Kinahan et al., 2014). In the context of reversible

binding (iii), it would be more difficult for larger RNA

species (18S and 28S), due to their larger hydrody-

namic radii, to remain adsorbed on the solid surface un-

der the shear stress resulting from the disc acceleration

(Kim et al., 2004) during washing with IPA and EtOH.

This finding has important implications for developing

LoaD systems, which target size specific purification of

molecules by solid phase purification (SPP).

Despite the limitations in capture and elution dur-

ing the solid phase purification of total RNA, sufficient

quantities and quality of RNA for downstream analysis

is retained and recovered utilizing the solvent-selective

LoaD router. These findings further support the feasi-

bility of the router for sample preparations from both

prokaryotic and eukaryotic samples.

5 Conclusions and outlook

In summary, we have purified total RNA with high in-

tegrity from cell lysates through an automated, merely

rotationally actuated flow control strategy involving a

network of solvent-selective valves. Purifying mammalian

and bacterial RNA, we demonstrated the applicability

of the platform did not depend on the source but on the

extraction conditions. The high accelerations during the

LoaD purification contributed strongly to desorption

and acted as a selective mechanism for the purification

of RNA. Under the studied conditions, the shear stress

induced by acceleration resulted in an overall low re-

covery of total RNA. In the future, we seek to improve

the total RNA extraction efficiency by using alterna-

tive solid-phase materials and by improved packing of

the solid phase. The fully automated system will also

include Based on the developed extraction platform,

we further plan to integrate pre-storage and release of

reagents (van Oordt et al., 2013), an upstream chem-

ical cell lysis and the first stage 3-phase liquid-liquid

RNA extraction as well as a downstream microarray

to provide a sample-to-answer, point-of-care molecular

diagnostic device for early diagnostics of breast cancer

measuring the expression levels of circulating miRNA

molecules, including miR-16.
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