4,901 research outputs found

    A study to develop neutron activation for measuring bone calcium content

    Get PDF
    Neutron activation analysis for measuring calcium in monkey bone

    The role of government venture capital funds: recent lessons from the U.K. experience

    Get PDF
    UK Government Venture Capital (GVC) - backed schemes have evolved to provide more effective, targeted, funding for high growth potential firms. Public-private co-financing, is generating attributable, additional, positive employment and sales turnover impacts in beneficiary firms, but significant long horizon follow-on investment requirements need addressing. Policy designers should be cognisant of the changing external financing ecosystem when designing co-investment schemes

    Nearby Clumpy, Gas Rich, Star Forming Galaxies: Local Analogs of High Redshift Clumpy Galaxies

    Get PDF
    Luminous compact blue galaxies (LCBGs) have enhanced star formation rates and compact morphologies. We combine Sloan Digital Sky Survey data with HI data of 29 LCBGs at redshift z~0 to understand their nature. We find that local LCBGs have high atomic gas fractions (~50%) and star formation rates per stellar mass consistent with some high redshift star forming galaxies. Many local LCBGs also have clumpy morphologies, with clumps distributed across their disks. Although rare, these galaxies appear to be similar to the clumpy star forming galaxies commonly observed at z~1-3. Local LCBGs separate into three groups: 1. Interacting galaxies (~20%); 2. Clumpy spirals (~40%); 3. Non-clumpy, non-spirals with regular shapes and smaller effective radii and stellar masses (~40%). It seems that the method of building up a high gas fraction, which then triggers star formation, is not the same for all local LCBGs. This may lead to a dichotomy in galaxy characteristics. We consider possible gas delivery scenarios and suggest that clumpy spirals, preferentially located in clusters and with companions, are smoothly accreting gas from tidally disrupted companions and/or intracluster gas enriched by stripped satellites. Conversely, as non-clumpy galaxies are preferentially located in the field and tend to be isolated, we suggest clumpy, cold streams, which destroy galaxy disks and prevent clump formation, as a likely gas delivery mechanism for these systems. Other possibilities include smooth cold streams, a series of minor mergers, or major interactions.Comment: 22 pages, 5 figure

    Path Integral Method for DNA Denaturation

    Full text link
    The statistical physics of homogeneous DNA is investigated by the imaginary time path integral formalism. The base pair stretchings are described by an ensemble of paths selected through a macroscopic constraint, the fulfillement of the second law of thermodynamics. The number of paths contributing to the partition function strongly increases around and above a specific temperature TcT^*_c whereas the fraction of unbound base pairs grows continuosly around and above TcT^*_c. The latter is identified with the denaturation temperature. Thus, the separation of the two complementary strands appears as a highly cooperative phenomenon displaying a smooth crossover versus TT. The thermodynamical properties have been computed in a large temperature range by varying the size of the path ensemble at the lower bound of the range. No significant physical dependence on the system size has been envisaged. The entropy grows continuosly versus TT while the specific heat displays a remarkable peak at TcT^*_c. The location of the peak versus TT varies with the stiffness of the anharmonic stacking interaction along the strand. The presented results suggest that denaturation in homogeneous DNA has the features of a second order phase transition. The method accounts for the cooperative behavior of a very large number of degrees of freedom while the computation time is kept within a reasonable limit.Comment: Physical Review E 2009 in pres

    Formation of Globular Clusters in Galaxy Mergers

    Full text link
    We present a high-resolution simulation of globular cluster formation in a galaxy merger. For the first time in such a simulation, individual star clusters are directly identified and followed on their orbits. We quantitatively compare star formation in the merger to that in the unperturbed galaxies. The merging galaxies show a strong starburst, in sharp contrast to their isolated progenitors. Most star clusters form in the tidal features. With a mass range of 5×1055\times10^{5}--5×106M5\times 10^{6} M_{\odot}, they are identified as globular clusters. The merger remnant is an elliptical galaxy. Clusters with different mass or age have different radial distributions in the galaxy. Our results show that the high specific frequency and bimodal distribution of metallicity observed in elliptical galaxies are natural products of gas-rich mergers, supporting a merger origin for the ellipticals and their globular cluster systems.Comment: ApJL accepted, version with high quality color images can be found in http://research.amnh.org/~yuexing/astro-ph/0407248.pd

    Flickering of 1.3 cm Sources in Sgr B2: Towards a Solution to the Ultracompact HII Region Lifetime Problem

    Full text link
    Accretion flows onto massive stars must transfer mass so quickly that they are themselves gravitationally unstable, forming dense clumps and filaments. These density perturbations interact with young massive stars, emitting ionizing radiation, alternately exposing and confining their HII regions. As a result, the HII regions are predicted to flicker in flux density over periods of decades to centuries rather than increasing monotonically in size as predicted by simple Spitzer solutions. We have recently observed the Sgr B2 region at 1.3 cm with the VLA in its three hybrid configurations (DnC, CnB and BnA) at a resolution of 0.25''. These observations were made to compare in detail with matched continuum observations from 1989. At 0.25'' resolution, Sgr B2 contains 41 UC HII regions, 6 of which are hypercompact. The new observations of Sgr B2 allow comparison of relative peak flux densites for the HII regions in Sgr B2 over a 23 year time baseline (1989-2012) in one of the most source-rich massive star forming regions in the Milky Way. The new 1.3 cm continuum images indicate that four of the 41 UC HII regions exhibit significant changes in their peak flux density, with one source (K3) dropping in peak flux density, and the other 3 sources (F10.303, F1 and F3) increasing in peak flux density. The results are consistent with statistical predictions from simulations of high mass star formation, suggesting that they offer a solution to the lifetime problem for ultracompact HII regions.Comment: 12 pages, 3 figures, Accepted for publication in the Astrophysical Journal Letter

    Wolf-Rayet and LBV Nebulae as the Result of Variable and Non-Spherical Stellar Winds

    Full text link
    The physical basis for interpreting observations of nebular morphology around massive stars in terms of the evolution of the central stars is reviewed, and examples are discussed, including NGC 6888, OMC-1, and eta Carinae.Comment: To be published in the Proceedings of IAU Colloquium 169 on Variable and Non-Spherical Stellar Winds in Luminous Hot Stars, ed. B. Wolf (Springer-Verlag, Berlin, Heidelberg). 7 pages, including 5 figures. A full-resolution version of fig 4 is available in the version at http://www.mpia-hd.mpg.de/theory/preprints.html#maclo

    Mixing Time Scales in a Supernova-Driven Interstellar Medium

    Get PDF
    We study the mixing of chemical species in the interstellar medium (ISM). Recent observations suggest that the distribution of species such as deuterium in the ISM may be far from homogeneous. This raises the question of how long it takes for inhomogeneities to be erased in the ISM, and how this depends on the length scale of the inhomogeneities. We added a tracer field to the three-dimensional, supernova-driven ISM model of Avillez (2000) to study mixing and dispersal in kiloparsec-scale simulations of the ISM with different supernova (SN) rates and different inhomogeneity length scales. We find several surprising results. Classical mixing length theory fails to predict the very weak dependence of mixing time on length scale that we find on scales of 25--500 pc. Derived diffusion coefficients increase exponentially with time, rather than remaining constant. The variance of composition declines exponentially, with a time constant of tens of Myr, so that large differences fade faster than small ones. The time constant depends on the inverse square root of the supernova rate. One major reason for these results is that even with numerical diffusion exceeding physical values, gas does not mix quickly between hot and cold regions.Comment: 23 pages, 14 figures that include 7 simulation images and 19 plots, accepted for publication at Ap

    Synthesis, characterization of a new carbonylated zirconium metallocene using a dichloro-zirconocene derived from partially alkylated s-indacene

    Get PDF
    Indexación: ScieloThis work describes the synthesis and characterization of new organometallic species, an unprecedented mononuclear zirconium complex bearing a tetraalkylated s-indacene ligand, and secondly, its respective dicarbonyl complex obtained by reduction with Mg/HgCl2. Theoretical calculations of these two compounds were carried out to gain further understanding of these novel molecular systems.http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072009000300014&lng=es&nrm=is
    corecore