1,162 research outputs found

    Stationary perturbations and infinitesimal rotations of static Einstein-Yang-Mills configurations with bosonic matter

    Get PDF
    Using the Kaluza-Klein structure of stationary spacetimes, a framework for analyzing stationary perturbations of static Einstein-Yang-Mills configurations with bosonic matter fields is presented. It is shown that the perturbations giving rise to non-vanishing ADM angular momentum are governed by a self-adjoint system of equations for a set of gauge invariant scalar amplitudes. The method is illustrated for SU(2) gauge fields, coupled to a Higgs doublet or a Higgs triplet. It is argued that slowly rotating black holes arise generically in self-gravitating non-Abelian gauge theories with bosonic matter, whereas, in general, soliton solutions do not have rotating counterparts.Comment: 8 pages, revtex, no figure

    Development of a graphite radiant heater

    Get PDF
    Design and tests of graphite radiant heater for high heat flux source in spacecraft thermostructural test

    Application of genetic markers to the discrimination of European Black Poplar ( Populus nigra ) from American Black Poplar ( P. deltoides ) and Hybrid Poplars ( P. x canadensis ) in Switzerland

    Get PDF
    European Black Poplar (Populus nigra) is considered a rare and endangered tree species because of severe reduction of its natural riverine habitat and potential hybridisation with the related non-indigenous taxa P. deltoides and P. x canadensis. As it is difficult to distinguish these taxa solely based on their morphology, we applied a PCR-based assay with an easy-to-use and robust molecular marker set (cpDNA trnL-trnF/RsaI RFLP, nDNA win3 and nDNA POPX/MspI RFLP) in order to identify pure P. nigra. Different plant tissues could be used for fast and standardised DNA extraction. The application of the three marker types was tested on a number of different Populus taxa, and they were also used for the verification of pure P. nigra in a sample of 304 putative P. nigra individuals from Switzerland. Cross-checking of the DNA data with those using a traditional allozyme approach resulted in complete agreement. The availability of molecular identification methods is an important prerequisite for the conservation of European Black Poplar, because pure, non-introgressed plant material can then be used in restoration projects of European floodplain

    Perturbation theory for self-gravitating gauge fields I: The odd-parity sector

    Full text link
    A gauge and coordinate invariant perturbation theory for self-gravitating non-Abelian gauge fields is developed and used to analyze local uniqueness and linear stability properties of non-Abelian equilibrium configurations. It is shown that all admissible stationary odd-parity excitations of the static and spherically symmetric Einstein-Yang-Mills soliton and black hole solutions have total angular momentum number â„“=1\ell = 1, and are characterized by non-vanishing asymptotic flux integrals. Local uniqueness results with respect to non-Abelian perturbations are also established for the Schwarzschild and the Reissner-Nordstr\"om solutions, which, in addition, are shown to be linearly stable under dynamical Einstein-Yang-Mills perturbations. Finally, unstable modes with â„“=1\ell = 1 are also excluded for the static and spherically symmetric non-Abelian solitons and black holes.Comment: 23 pages, revtex, no figure

    Controlled lasing from active optomechanical resonators

    Get PDF
    Planar microcavities with distributed Bragg reflectors (DBRs) host, besides confined optical modes, also mechanical resonances due to stop bands in the phonon dispersion relation of the DBRs. These resonances have frequencies in the sub-terahertz (10E10-10E11 Hz) range with quality factors exceeding 1000. The interaction of photons and phonons in such optomechanical systems can be drastically enhanced, opening a new route toward manipulation of light. Here we implemented active semiconducting layers into the microcavity to obtain a vertical-cavity surface-emitting laser (VCSEL). Thereby three resonant excitations -photons, phonons, and electrons- can interact strongly with each other providing control of the VCSEL laser emission: a picosecond strain pulse injected into the VCSEL excites long-living mechanical resonances therein. As a result, modulation of the lasing intensity at frequencies up to 40 GHz is observed. From these findings prospective applications such as THz laser control and stimulated phonon emission may emerge

    On rotational excitations and axial deformations of BPS monopoles and Julia-Zee dyons

    Full text link
    It is shown that Julia-Zee dyons do not admit slowly rotating excitations. This is achieved by investigating the complete set of stationary excitations which can give rise to non-vanishing angular momentum. The relevant zero modes are parametrized in a gauge invariant way and analyzed by means of a harmonic decomposition. Since general arguments show that the solutions to the linearized Bogomol'nyi equations cannot contribute to the angular momentum, the relevant modes are governed by a set of electric and a set of non self-dual magnetic perturbation equations. The absence of axial dipole deformations is also established.Comment: 22 pages, Revtex, no figure

    Rotating Hairy Black Holes

    Get PDF
    We construct stationary black holes in SU(2) Einstein-Yang-Mills theory, which carry angular momentum and electric charge. Possessing non-trivial non-abelian magnetic fields outside their regular event horizon, they represent non-perturbative rotating hairy black holes.Comment: 13 pages, including 4 eps figures, LaTex forma

    Black hole polarization and new entropy bounds

    Get PDF
    Zaslavskii has suggested how to tighten Bekenstein's bound on entropy when the object is electrically charged. Recently Hod has provided a second tighter version of the bound applicable when the object is rotating. Here we derive Zaslavskii's optimized bound by considering the accretion of an ordinary charged object by a black hole. The force originating from the polarization of the black hole by a nearby charge is central to the derivation of the bound from the generalized second law. We also conjecture an entropy bound for charged rotating objects, a synthesis of Zaslavskii's and Hod's. On the basis of the no hair principle for black holes, we show that this last bound cannot be tightened further in a generic way by knowledge of ``global'' conserved charges, e.g., baryon number, which may be borne by the object.Comment: 21 pages, RevTex, Regularization of potential made clearer. Error in energy of the particle corrected with no consequence for final conclusions. New references adde

    Evidence of re-osseointegration after electrolytic cleaning and regenerative therapy of peri-implantitis in humans: a case report with four implants.

    Get PDF
    OBJECTIVE To evaluate re-osseointegration after electrolytic cleaning and regenerative therapy of dental implants with peri-implantitis in humans. MATERIAL AND METHODS Four dental implants that developed peri-implantitis underwent electrolytic cleaning followed by regenerative therapy with guided bone regeneration. All four implants developed recurrent peri-implantitis and were therefore explanted 6 to 13 months later. Radiographic bone level, probing depth, and bleeding on probing were determined at the time of surgery, 6 months later, and before implant retrieval. The peri-implant tissues were histologically and histomorphometrically analyzed. RESULTS All four implants demonstrated radiographic and histological bone gain, reduced probing depth, and bleeding on probing. Radiographic bone gain was 5.8 mm mesially and 4.8 mm distally for implant #1, 3.3 mm and 2.3 mm for implant #2, 3.1 mm and 0.5 mm for implant #3, and 3.5 mm and 2.8 mm for implant #4. The histometric mean and maximum vertical bone gain for implant #1 to #4 was 1.65 mm and 2.54 mm, 3.04 mm and 3.47 mm, 0.43 mm and 1.27 mm, and 4.16 mm and 5.22 mm, respectively. The percentage of re-osseointegration for implant #1 to #4 was 21.0%, 36.9%, 5.7%, and 39.0%, respectively. In one implant, the newly formed bone was deposited directly onto calculus on the implant surface. CONCLUSIONS We found that (1) re-osseointegration is possible on a formerly contaminated implant surface and (2) the electrolytic cleaning process seems to be effective enough at sites with calculus residues. CLINICAL RELEVANCE Since re-osseointegration can be achieved by electrolytic cleaning, this decontamination technique may be considered as a future treatment concept

    Global behavior of solutions to the static spherically symmetric EYM equations

    Get PDF
    The set of all possible spherically symmetric magnetic static Einstein-Yang-Mills field equations for an arbitrary compact semi-simple gauge group GG was classified in two previous papers. Local analytic solutions near the center and a black hole horizon as well as those that are analytic and bounded near infinity were shown to exist. Some globally bounded solutions are also known to exist because they can be obtained by embedding solutions for the G=SU(2)G=SU(2) case which is well understood. Here we derive some asymptotic properties of an arbitrary global solution, namely one that exists locally near a radial value r0r_{0}, has positive mass m(r)m(r) at r0r_{0} and develops no horizon for all r>r0r>r_{0}. The set of asymptotic values of the Yang-Mills potential (in a suitable well defined gauge) is shown to be finite in the so-called regular case, but may form a more complicated real variety for models obtained from irregular rotation group actions.Comment: 43 page
    • …
    corecore