Using the Kaluza-Klein structure of stationary spacetimes, a framework for
analyzing stationary perturbations of static Einstein-Yang-Mills configurations
with bosonic matter fields is presented. It is shown that the perturbations
giving rise to non-vanishing ADM angular momentum are governed by a
self-adjoint system of equations for a set of gauge invariant scalar
amplitudes. The method is illustrated for SU(2) gauge fields, coupled to a
Higgs doublet or a Higgs triplet. It is argued that slowly rotating black holes
arise generically in self-gravitating non-Abelian gauge theories with bosonic
matter, whereas, in general, soliton solutions do not have rotating
counterparts.Comment: 8 pages, revtex, no figure