364 research outputs found

    Leukemia, Brain Tumors, and Exposure to Extremely Low Frequency Electromagnetic Fields in Swiss Railway Employees

    Get PDF
    Railway engineers provide excellent opportunities for studying the relation between exposure to extremely low frequency magnetic fields and leukemia or brain tumors. In a cohort study of Swiss railway personnel with 2.7 × 105 person-years of follow-up (1972-1993), the authors compared occupations with high average exposures (line engineers: 25.9 μT) to those with medium and low exposures (station masters: 1 μT). The mortality rate ratio for leukemia was 2.4 (95% confidence interval (CI): 1.0, 6.1) among line engineers (reference category: station masters). The mortality rate ratio for brain tumors was 1.0 (95% CI: 0.2, 4.6) among line engineers and 5.1 (95% CI: 1.2, 21.2) among shunting yard engineers (compared with station masters). Two exposure characteristics were evaluated: cumulative exposure in μT-years and years spent under exposure to magnetic fields of ≥10 μT. There was a significant increase in leukemia mortality of 0.9% (95% CI: 0.2, 1.7) per μT-year of cumulative exposure to extremely low frequency magnetic fields. The increase by years spent under exposure of ≥10 μT was even stronger: 62% per year (95% CI: 15, 129). Brain cancer risk did not show a dose-response relation. This study contributes to the evidence for a link between heavy exposure to extremely low frequency magnetic fields and leukemia. Its strengths include reliable measurements and reliable historical reconstruction of exposure

    Serial measurements of phosphorylated neurofilament-heavy in the serum of subjects with amyotrophic lateral sclerosis

    Get PDF
    There is a need for a blood biomarker of disease activity in ALS. This marker needs to measure the loss of motor neurones. Phosphorylated neurofilament heavy chain (pNfH) in the serum is a biomarker of axonal injury. Previous studies have found that levels of pNfH are elevated in ALS. We have performed a serial study of pNfH levels in 98 subjects from our ALS clinic. There was significant elevation of levels of pNfH in subjects with ALS compared to controls, although there was considerable variability. In studies of individuals who had two or more serial samples, we found that the levels of pNfH increased over time in the early stage of disease. Levels were low in subjects with long survival. The rate of rise of pNfH was inversely correlated with survival. We suggest that the initial level of pNfH is a marker of disease severity and that changes in pNfH levels are markers of disease progression

    A Material-Based Approach to the Digitization of Early Applied Colors

    Get PDF
    While the digitization of archival films has been practiced for more than a decade, there is still a lack of academic rigour in this field, both on a scientific as well as on an interdisciplinary level. Therefore, we are in need of a better understanding of basic principles, both technological and aesthetic, that guide the many decisions taken throughout the process. This paper presents three interconnected research projects that investigate these topics with a comprehensive approach. Based on thorough analyses of the technology, physics, and aesthetics of film colours, this material-based approach connects these diverse disciplines with the aim to translate the appearance of analogue film colours into the digital domain

    Direct Substrate Delivery into Mitochondrial-Fission Deficient Pancreatic Islets Rescues Insulin Secretion

    Get PDF
    In pancreatic beta cells, mitochondrial bioenergetics control glucose-stimulated insulin secretion (GSIS). Mitochondrial dynamics are generally associated with quality control, maintaining the functionality of bioenergetics. By acute pharmacological inhibition of mitochondrial fission protein Drp1, we here demonstrate that mitochondrial fission is necessary for GSIS in mouse and human islets. We confirm that genetic silencing of Drp1 increases mitochondrial proton leak in MIN6 cells. However, our comprehensive analysis of pancreatic islet bioenergetics reveals that Drp1 does not control insulin secretion via its effect on proton leak but instead via modulation of glucose-fuelled respiration. Notably, pyruvate fully rescues the impaired insulin secretion of fission-deficient beta cells, demonstrating that defective mitochondrial dynamics solely impact substrate supply upstream of oxidative phosphorylation. The present findings provide novel insights in how mitochondrial dysfunction may cause pancreatic beta cell failure. In addition, the results will stimulate new thinking in the intersecting fields of mitochondrial dynamics and bioenergetics, as treatment of defective dynamics in mitochondrial diseases appears to be possible by improving metabolism upstream of mitochondria

    Biogenesis of the inner membrane complex is dependent on vesicular transport by the alveolate specific GTPase Rab11B

    Get PDF
    Apicomplexan parasites belong to a recently recognised group of protozoa referred to as Alveolata. These protists contain membranous sacs (alveoli) beneath the plasma membrane, termed the Inner Membrane Complex (IMC) in the case of Apicomplexa. During parasite replication the IMC is formed de novo within the mother cell in a process described as internal budding. We hypothesized that an alveolate specific factor is involved in the specific transport of vesicles from the Golgi to the IMC and identified the small GTPase Rab11B as an alveolate specific Rab-GTPase that localises to the growing end of the IMC during replication of Toxoplasma gondii. Conditional interference with Rab11B function leads to a profound defect in IMC biogenesis, indicating that Rab11B is required for the transport of Golgi derived vesicles to the nascent IMC of the daughter cell. Curiously, a block in IMC biogenesis did not affect formation of sub-pellicular microtubules, indicating that IMC biogenesis and formation of sub-pellicular microtubules is not mechanistically linked. We propose a model where Rab11B specifically transports vesicles derived from the Golgi to the immature IMC of the growing daughter parasites

    Bsx, a novel hypothalamic factor linking feeding with locomotor activity, is regulated by energy availability

    Get PDF
    Es un estudio en modelos de rata acerca del papel de BSX, la actividad y la alimentación.We recently reported that the hypothalamic homeobox domain transcription factor Bsx plays an essential role in the central nervous system control of spontaneous physical activity and the generation of hyperphagic responses. Moreover, we found Bsx to be a master regulator for the hypothalamic expression of key orexigenic neuropeptide Y and agouti gene-related protein. We now hypothesized that Bsx, which is expressed in the dorsomedial and arcuate nucleus (ARC) of the hypothalamus, is regulated by afferent signals in response to peripheral energy balance. Bsx expression was analyzed using in situ hybridization in fed vs. fasted (24 h) and ghrelin vs. leptin-treated rats, as well as in mice deficient for leptin or the ghrelin signaling. Ghrelin administration increased, whereas ghrelin receptor antagonist decreased ARC Bsx expression. Leptin injection attenuated the fasting-induced increase in ARC Bsx levels but had no effect in fed rats. Dorsomedial hypothalamic nucleus Bsx expression was unaffected by pharmacological modifications of leptin or ghrelin signaling. Obese leptin-deficient (ob/ob) mice, but not obese melanocortin 4 receptor-knockout mice, showed higher expression of Bsx, consistent with dependency from afferent leptin rather than increased adiposity per se. Interestingly, exposure to a high-fat diet triggered Bsx expression, consistent with the concept that decreased leptin signaling due to a highfat diet induced leptin resistance. Our data indicate that ARC Bsx expression is specifically regulated by afferent energy balance signals, including input from leptin and ghrelin. Future studies will be necessary to test if Bsx may be involved in the pathogenesis of leptin resistance
    corecore