956 research outputs found

    Visual discomfort from flash afterimages of riloid patterns

    Get PDF
    Op-art-based stimuli have been shown to be uncomfortable, possibly due to a combination of fixational eye movements (microsaccades) and excessive cortical responses. Efforts have been made to measure illusory phenomena arising from these stimuli in the absence of microsaccades, but there has been no attempt thus far to decouple the effects of the cortical response from the effect of fixational eye movements. This study uses flash afterimages to stablise the image on the retina and thus reduce the systematic effect of eye movements, in order to investigate the role of the brain in discomfort from op-art-based stimuli. There was a relationship between spatial frequency and the magnitude of the P300 response, showing a similar pattern to that of discomfort judgements, which suggests there might be a role of discomfort and excessive neural responses independently from the effects of microsaccades

    A survey of agent-oriented methodologies

    Get PDF
    This article introduces the current agent-oriented methodologies. It discusses what approaches have been followed (mainly extending existing object oriented and knowledge engineering methodologies), the suitability of these approaches for agent modelling, and some conclusions drawn from the survey

    On the Price of Anarchy of Highly Congested Nonatomic Network Games

    Full text link
    We consider nonatomic network games with one source and one destination. We examine the asymptotic behavior of the price of anarchy as the inflow increases. In accordance with some empirical observations, we show that, under suitable conditions, the price of anarchy is asymptotic to one. We show with some counterexamples that this is not always the case. The counterexamples occur in very simple parallel graphs.Comment: 26 pages, 6 figure

    Axion astronomy with microwave cavity experiments

    Get PDF
    Terrestrial searches for the conversion of dark matter axions or axion-like particles into photons inside magnetic fields are sensitive to the phase space structure of the local Milky Way halo. We simulate signals in a hypothetical future experiment based on the Axion Dark Matter eXperiment (ADMX) that could be performed once the axion has been detected and a frequency range contain- ing the axion mass has been identified. We develop a statistical analysis to extract astrophysical parameters, such as the halo velocity dispersion and laboratory velocity, from such data and find that with only a few days integration time a level of precision can be reached matching that of astro- nomical observations. For longer experiments lasting up to a year in duration we find that exploiting the modulation of the power spectrum in time allows accurate measurements of the Solar peculiar velocity with an accuracy that would improve upon astronomical observations. We also simulate signals based on results from N-body simulations and find that finer substructure in the form of tidal streams would show up prominently in future data, even if only a subdominant contribution to the local dark matter distribution. In these cases it would be possible to reconstruct all the properties of a dark matter stream using the time and frequency dependence of the signal. Finally we consider the detection prospects for a network of streams from tidally disrupted axion miniclusters. These features appear much more prominently in the resolved spectrum than suggested by calculations based on a scan over a range of resonant frequencies, making the detection of axion minicluster streams more viable than previously thought. These results confirm that haloscope experiments in a post-discovery era are able to perform “axion astronomy”

    Visual discomfort from flash afterimages of riloid patterns

    Get PDF
    Op-art-based stimuli have been shown to be uncomfortable, possibly due to a combination of fixational eye movements (microsaccades) and excessive cortical responses. Efforts have been made to measure illusory phenomena arising from these stimuli in the absence of microsaccades, but there has been no attempt thus far to decouple the effects of the cortical response from the effect of fixational eye movements. This study uses flash afterimages to stabilise the image on the retina and thus reduce the systematic effect of eye movements, in order to investigate the role of the brain in discomfort from op-art-based stimuli. There was a relationship between spatial frequency and the magnitude of the P300 response, showing a similar pattern to that of discomfort judgements, which suggests that there might be a role of discomfort and excessive neural responses independently from the effects of microsaccades

    A 40-Year Cohort Study of Evolving Hypothalamic Dysfunction in Infants and Young Children (<3 years) with Optic Pathway Gliomas

    Get PDF
    Despite high survival, paediatric optic pathway hypothalamic gliomas are associated with significant morbidity and late mortality. Those youngest at presentation have the worst outcomes. We aimed to assess presenting disease, tumour location, and treatment factors implicated in the evolution of neuroendocrine, metabolic, and neurobehavioural morbidity in 90 infants/children diagnosed before their third birthday and followed-up for 9.5 years (range 0.5–25.0). A total of 52 (57.8%) patients experienced endo-metabolic dysfunction (EMD), the large majority (46) of whom had hypothalamic involvement (H+) and lower endocrine event-free survival (EEFS) rates. EMD was greatly increased by a diencephalic syndrome presentation (85.2% vs. 46%, p = 0.001)), H+ (OR 6.1 95% CI 1.7–21.7, p 0.005), radiotherapy (OR 16.2, 95% CI 1.7–158.6, p = 0.017) and surgery (OR 4.8 95% CI 1.3–17.2, p = 0.015), all associated with anterior pituitary disorders. Obesity occurred in 25% of cases and was clustered with the endocrinopathies. Neurobehavioural deficits occurred in over half (52) of the cohort and were associated with H+ (OR 2.5 95% C.I. 1.1–5.9, p = 0.043) and radiotherapy (OR 23.1 C.I. 2.9–182, p = 0.003). Very young children with OPHG carry a high risk of endo-metabolic and neurobehavioural comorbidities which deserve better understanding and timely/parallel support from diagnosis to improve outcomes. These evolve in complex, hierarchical patterns over time whose aetiology appears predominantly determined by injury from the hypothalamic tumour location alongside adjuvant treatment strategies

    A Study into Autonomous Scanning for 3D Model Construction

    Get PDF
    3D scanning and printing has the potential to revolutionise the world. It offers a bridge between the virtual environment and the tangible world. The use of 3D scanners to capture and recreate defining objects is known as 3D virtualisation. It involves capturing a real-life scene using laser technology and representing its geometry using 3D modelling software or 3D printers. Despite being a relatively young technology, 3D printing has now become accessible and a part of modern industry. The printing of a 3D generated model can change the way in which an individual understands a concept, environment or communicates an idea. This has multiple benefits, for education, skills development, training and within the construction industry. However, using this technology relies on the operator having the skills and training required to generate accurate 3D models, and account for errors in the mesh after scanning. As such, this paper details the development into an automated 3D scanning system, and a cloud-based printing platform, where models are intelligently printed by multiple devices. Its development allows the readiness of 3D printing capabilities to unskilled users, who have no education or training in 3D model construction. Objects can be instantly manipulated and transferred into free-to-use open source graphic software. The access to detailed 3D model construction has never been so accessible to the untrained

    Gaussian process manifold interpolation for probabilistic atrial activation maps and uncertain conduction velocity

    Get PDF
    In patients with atrial fibrillation, local activation time (LAT) maps are routinely used for characterizing patient pathophysiology. The gradient of LAT maps can be used to calculate conduction velocity (CV), which directly relates to material conductivity and may provide an important measure of atrial substrate properties. Including uncertainty in CV calculations would help with interpreting the reliability of these measurements. Here, we build upon a recent insight into reduced-rank Gaussian processes (GPs) to perform probabilistic interpolation of uncertain LAT directly on human atrial manifolds. Our Gaussian process manifold interpolation (GPMI) method accounts for the topology of the atrium, and allows for calculation of statistics for predicted CV. We demonstrate our method on two clinical cases, and perform validation against a simulated ground truth. CV uncertainty depends on data density, wave propagation direction and CV magnitude. GPMI is suitable for probabilistic interpolation of other uncertain quantities on non-Euclidean manifolds. This article is part of the theme issue ‘Uncertainty quantification in cardiac and cardiovascular modelling and simulation’

    Flow interactions with an aquatic macrophyte: a field study using stereoscopic particle image velocimetry

    Get PDF
    This paper reports the morphology of a natural patch of Ranunculus penicillatus and presents high-resolution measurements of flow velocities in its wake using a stereoscopic PIV field measurement system. The patch was 3.80 m long, 1.24 m wide and caused substantial changes to downstream mean velocities and turbulence. Vertical profiles of streamwise mean velocity were not logarithmic and flow was redirected under the positively buoyant canopy, enhancing vertical turbulent mixing in the wake and generating a large region where the velocity covariance u'w' was positive. Turbulent kinetic energy was enhanced downstream from the patch lateral shear layer, but not at the centre of the wake. Spectra downstream from the patch showed that turbulence was neither dominated by fine-scale nor large-scale structures, likely due to the low energy of the flow conditions and lack of a developed vortex street within the measurement domain. Sedimentation was observed at the upstream end of the patch, but not underneath the floating canopy. The methods and results of this work will be useful for planning other in situ studies. Also, the reported data on macrophyte geometry and biometrics will assist with the design of more realistic replicas for use in laboratory studies

    Bandgaps in the propagation and scattering of surface water waves over cylindrical steps

    Full text link
    Here we investigate the propagation and scattering of surface water waves by arrays of bottom-mounted cylindrical steps. Both periodic and random arrangements of the steps are considered. The wave transmission through the arrays is computed using the multiple scattering method based upon a recently derived formulation. For the periodic case, the results are compared to the band structure calculation. We demonstrate that complete band gaps can be obtained in such a system. Furthermore, we show that the randomization of the location of the steps can significantly reduce the transmission of water waves. Comparison with other systems is also discussed.Comment: 4 pages, 3 figure
    corecore