2,976 research outputs found
Mgâ/âCa and δ18O in living planktic foraminifers from the Caribbean, Gulf of Mexico and Florida Straits
Past ocean temperatures and salinities can be approximated from combined stable oxygen isotopes (δ18O) and MgâââCa measurements in fossil foraminiferal tests with varying success. To further refine this approach, we collected living planktic foraminifers by net sampling and pumping of sea surface water from the Caribbean Sea, the eastern Gulf of Mexico and the Florida Straits. Analyses of δ18O and MgâââCa in eight living planktic species (Globigerinoides sacculifer, Orbulina universa, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata, Globorotalia menardii, Globorotalia ungulata, Globorotalia truncatulinoides and Globorotalia tumida) were compared to measured in situ properties of the ambient seawater (temperature, salinity and δ18Oseawater) and fossil tests of underlying surface sediments. âVital effectsâ such as symbiont activity and test growth cause δ18O disequilibria with respect to the ambient seawater and a large scatter in foraminiferal MgâââCa. Overall, ocean temperature is the most prominent environmental influence on δ18Ocalcite and MgâââCa. Enrichment of the heavier 18O isotope in living specimens below the mixed layer and in fossil tests is clearly related to lowered in situ temperatures and gametogenic calcification. MgâââCa-based temperature estimates of G. sacculifer indicate seasonal maximum accumulation rates on the seafloor in early spring (March) at Caribbean stations and later in the year (May) in the Florida Straits, related to the respective mixed layer temperatures of âź26ââC. Notably, G. sacculifer reveals a weak positive linear relationship between foraminiferal derived δ18Oseawater estimates and both measured in situ δ18Oseawater and salinity. Our results affirm the applicability of existing δ18O and MgâââCa calibrations for the reconstruction of past ocean temperatures and δ18Oseawater reflecting salinity due to the convincing accordance of proxy data in both living and fossil foraminifers, and in situ environmental parameters. Large vital effects and seasonally varying proxy signals, however, need to be taken into account
Combining TCAD and Monte Carlo methods to simulate CMOS pixel sensors with a small collection electrode using the Allpix framework
Combining electrostatic field simulations with Monte Carlo methods enables realistic modeling of the detector response for novel monolithic silicon detectors with strongly non-linear electric fields. Both the precise field description and the inclusion of Landau fluctuations and production of secondary particles in the sensor are crucial ingredients for the understanding and reproduction of detector characteristics.
In this paper, a CMOS pixel sensor with small collection electrode design, implemented in a high-resistivity epitaxial layer, is simulated by integrating a detailed electric field model from finite element TCAD into a Monte Carlo based simulation with the framework. The simulation results are compared to data recorded in test-beam measurements and very good agreement is found for various quantities such as cluster size, spatial resolution and efficiency. Furthermore, the observables are studied as a function of the intra-pixel incidence position to enable a detailed comparison with the detector behavior observed in data.
The validation of such simulations is fundamental for modeling the detector response and for predicting the performance of future prototype designs. Moreover, visualization plots extracted from the charge carrier drift model of the framework can aid in understanding the charge propagation behavior in different regions of the sensor
Global distribution of a chlorophyll f cyanobacterial marker
Some cyanobacteria use light outside the visible spectrum for oxygenic photosynthesis. The far-red light (FRL) region is made accessible through a complex acclimation process that involves the formation of new phycobilisomes and photosystems containing chlorophyll f. Diverse cyanobacteria ranging from unicellular to branched-filamentous forms show this response. These organisms have been isolated from shaded environments such as microbial mats, soil, rock, and stromatolites. However, the full spread of chlorophyll f-containing species in nature is still unknown. Currently, discovering new chlorophyll f cyanobacteria involves lengthy incubation times under selective far-red light. We have used a marker gene to detect chlorophyll f organisms in environmental samples and metagenomic data. This marker, apcE2, encodes a phycobilisome linker associated with FRL-photosynthesis. By focusing on a far-red motif within the sequence, degenerate PCR and BLAST searches can effectively discriminate against the normal chlorophyll a-associated apcE. Even short recovered sequences carry enough information for phylogenetic placement. Markers of chlorophyll f photosynthesis were found in metagenomic datasets from diverse environments around the globe, including cyanobacterial symbionts, hypersaline lakes, corals, and the Arctic/Antarctic regions. This additional information enabled higher phylogenetic resolution supporting the hypothesis that vertical descent, as opposed to horizontal gene transfer, is largely responsible for this phenotypeâs distribution
A novel mutation in GJA8 associated with autosomal dominant congenital cataract in a family of Indian origin
Purpose
To identify the underlying genetic defect in a four-generation family of Chinese origin with autosomal dominant congenital cataract-microcornea syndrome (CCMC).
Methods
All individuals in the study underwent a full clinical examination and the details of history were collected . Genomic DNA extracted from peripheral blood was amplified by polymerase chain reaction (PCR) method and the exons of all candidate genes were sequenced.
Results
Direct sequencing of the encoding regions of the candidate genes revealed a heterozygous mutation c.592CâT in exon 2 of the gap junction protein, alpha 8 (GJA8) gene. This mutation was responsible for the familial disorder through the substitution of a highly conserved arginine to tryptophan at codon 198 (p.R198W). This change co-segregated with all affected members of the family, but was not detected either in the non-carrier relatives or in the 100 normal controls.
Conclusions
This report is the first to relate p.R198W mutation in GJA8 with CCMC. The result expands the mutation spectrum of GJA8 in associated with congenital cataract and microcornea, and implies that this gene has direct involvement with the development of the lens as well as the other anterior segment of the eye
Molecular basis for the sensitivity of TRP channels to polyunsaturated fatty acids
Transient receptor potential (TRP) channels represent a superfamily of unselective cation channels that are subdivided into seven subfamilies based on their sequence homology and differences in gating and functional properties. Little is known about the molecular mechanisms of TRP channel regulation, particularly of the "canonical" TRP (TRPC) subfamily and their activation by polyunsaturated fatty acids (PUFAs). Here, we analyzed the structure-function relationship of Drosophila fruit fly TRPC channels. The primary aim was to uncover the molecular basis of PUFA sensitivity of Drosophila TRP-like (TRPL) and TRPgamma channels. Amino acid (aa) sequence alignment of the three Drosophila TRPC channels revealed 50 aa residues highly conserved in PUFA-sensitive TRPL and TRPgamma channels but not in the PUFA-insensitive TRP channel. Substitution of respective aa in TRPL by corresponding aa of TRP identified 18 residues that are necessary for PUFA-mediated activation of TRPL. Most aa positions are located within a stretch comprising transmembrane domains S2-S4, whereas six aa positions have been assigned to the proximal cytosolic C-terminus. Interestingly, residues I465 and S471 are required for activation by 5,8,11,14-eicosatetraynoic acid (ETYA) but not 5,8,11-eicosatriynoic acid (ETI). As proof of concept, we generated a PUFA-sensitive TRP channel by exchanging the corresponding aa from TRPL to TRP. Our study demonstrates a specific aa pattern in the transmembrane domains S2-S4 and the proximal C-terminus essential for TRP channel activation by PUFAs
Surface nitrate utilization in the Bering Sea since 180 ka BP : insight from sedimentary nitrogen isotopes
We present high-resolution records of sedimentary nitrogen (δ15Nbulk) and carbon isotope ratios (δ13Cbulk) from piston core SO201-2-85KL located in the western Bering Sea. The records reflect changes in surface nitrate utilization and terrestrial organic matter contribution in submillennial resolution that span the last 180 kyr. The δ15Nbulk record is characterized by a minimum during the penultimate interglacial indicating low nitrate utilization (~62â80%) despite the relatively high export production inferred from opal concentrations along with a significant reduction in the terrestrial organic matter fraction (mterr). This suggests that the consumption of the nitrate pool at our site was incomplete and even more reduced than today (~84%). δ15Nbulk increases from Marine Isotope Stage (MIS) 5.4 and culminates during the Last Glacial Maximum, which indicates that nitrate utilization in the Bering Sea was raised during cold intervals (MIS 5.4, 5.2, 4) and almost complete during MIS 3 and 2 (~93â100%). This is in agreement with previous hypotheses suggesting that stronger glacial stratification reduced the nutrient supply from the subeuphotic zone, thereby increasing the iron-to-nutrient ratio and therefore the nitrate utilization in the mixed surface layer. Large variations in δ15Nbulk were also recorded from 180 to 130 ka BP (MIS 6), indicating a potential link to insolation and sea-level forcing and its related feedbacks. Millennial-scale oscillations were observed in δ15Nbulk and δ13Cbulk that might be related to Greenland interstadials
Nuclear proto-oncogene products transactivate the human papillomavirus type 16 promoter.
Human papillomavirus (HPV) type 16 and 18 viral genomes are frequently detected in cervical and penile cancer biopsies. Although this strongly suggests a prominent role for HPV infection in the development of genital cancer, other genetic or environmental factors are also involved. Genital cancer is postulated to result from loss of cellular control functions, which leads to an unregulated expression of HPV oncogenic proteins. In our study, we determined the trans-activating properties of nuclear proto-oncogene proteins c-Fos, c-Jun and c-Myc on P97 enhancer/promoter activity of HPV16. Using a CAT-reporter construct containing the HPV16 enhancer/promoter element, we investigated the trans-activating effects of c-Fos, c-Jun, c-Myc, and E2 in cervical HT-3 cells. c-Fos and c-Jun overexpression resulted in a 3.3- and 3.1-fold up-regulation of CAT activity. Only 2-fold induction was determined by co-transfection with c-myc and the viral transcription factor E2. Based on these findings, we investigated the expression of HPV DNA (16 and 18) as well as nuclear proto-oncogenes (c-fos, c-jun and c-myc) in nine cervical cancers by in situ hybridisation. In six out of nine carcinomas, HPV16 and/or HPV18 DNA was detectable. All tumours showed an intense and homogeneous expression of c-fos and c-jun mRNA, while the signal for c-myc was detectable only in four specimens. These data suggest that deregulation of nuclear proto-oncogene expression may contribute to an overexpression of HPV-derived oncogenic proteins (E6 and E7), which is generally hypothesised to be an important step in the malignant transformation of HPV-associated tumours
A novel fan-shaped cataract-microcornea syndrome caused by a mutation of CRYAA in an Indian family
PURPOSE:
The molecular characterization of an Indian family having 10 members in four generations affected with a unique fan-shaped cataract-microcornea syndrome.
METHODS:
Detailed family history and clinical data were recorded. A genome-wide screening by two-point linkage analysis using more than 400 microsatellite markers in combination with multipoint lod score and haplotype analysis was carried out. Mutation screening was performed in the candidate gene by bi-directional sequencing of amplified products.
RESULTS:
The cataract-microcornea locus in this family was mapped to a 23.5 cM region on chromosome 21q22.3. Direct sequencing of the candidate gene CRYAA revealed a heterozygous C>T transition resulting in the substitution of the highly conserved arginine at position 116 by cysteine (R116C).
CONCLUSIONS:
This study provides the report of mapping a locus for syndromal cataract (cataract-microcornea syndrome) on 21q22.3. The mutation observed in CRYAA in the present family highlights the phenotypic heterogeneity of the disorder in relation to the genotype, as an identical mutation has previously been reported in an American family with a different type of cataract. The "fan-shaped cataract" observed in the present family has not been reported before
Performance evaluation of thin active-edge planar sensors for the CLIC vertex detector
Thin planar silicon sensors with a pitch of 55Îźm, active edge and various guard-ring layouts are investigated,using two-dimensional finite-element T-CAD simulations. The simulation results have been compared toexperimental data, and an overall good agreement is observed. It is demonstrated that the 50Îźm thick active-edge planar silicon sensors with floating guard-ring or without guard-ring can be operated fully efficiently upto the physical edge of the sensor. The simulation findings are used to identify suitable sensor designs forapplication in the high-precision vertex detector of the future CLIC linear ee collider
The genome of Romanomermis culicivorax:revealing fundamental changes in the core developmental genetic toolkit in Nematoda
Background: The genetics of development in the nematode Caenorhabditis elegans has been described in exquisite detail. The phylum Nematoda has two classes: Chromadorea (which includes C. elegans) and the Enoplea. While the development of many chromadorean species resembles closely that of C. elegans, enoplean nematodes show markedly different patterns of early cell division and cell fate assignment. Embryogenesis of the enoplean Romanomermis culicivorax has been studied in detail, but the genetic circuitry underpinning development in this species has not been explored. Results: We generated a draft genome for R. culicivorax and compared its gene content with that of C. elegans, a second enoplean, the vertebrate parasite Trichinella spiralis, and a representative arthropod, Tribolium castaneum. This comparison revealed that R. culicivorax has retained components of the conserved ecdysozoan developmental gene toolkit lost in C. elegans. T. spiralis has independently lost even more of this toolkit than has C. elegans. However, the C. elegans toolkit is not simply depauperate, as many novel genes essential for embryogenesis in C. elegans are not found in, or have only extremely divergent homologues in R. culicivorax and T. spiralis. Our data imply fundamental differences in the genetic programmes not only for early cell specification but also others such as vulva formation and sex determination. Conclusions: Despite the apparent morphological conservatism, major differences in the molecular logic of development have evolved within the phylum Nematoda. R. culicivorax serves as a tractable system to contrast C. elegans and understand how divergent genomic and thus regulatory backgrounds nevertheless generate a conserved phenotype. The R. culicivorax draft genome will promote use of this species as a research model
- âŚ