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Abstract �
�

We present high-resolution records of sedimentary nitrogen (δ15Nbulk) and carbon ���

isotope ratios (δ13Cbulk) from piston core SO201-2-85KL located in the western Bering ���

Sea. The records reflect changes in surface nitrate utilization and terrestrial organic ���

matter contribution in submillennial resolution that span the last 180 kyr. The δ15Nbulk ���

record is characterized by a minimum during the penultimate interglacial indicating ���

low nitrate utilization (~62-80%) despite the relatively high export production inferred ���

from opal concentrations along with a significant reduction in the terrestrial organic ���

matter fraction (mterr). This suggests that the consumption of the nitrate pool at our ���

site was incomplete and even more reduced than today (~84%). δ
15Nbulk increases �	�

from Marine Isotope Stage (MIS) 5.4 and culminates during the Last Glacial �
�

Maximum, which indicates that nitrate utilization in the Bering Sea was raised during ���

cold intervals (MIS 5.4, 5.2, 4) and almost complete during MIS 3 and 2 (~93-100%). ���

This is in agreement with previous hypotheses suggesting that stronger glacial ���

stratification reduced the nutrient supply from the subeuphotic zone, thereby ���

increasing the iron-to-nutrient ratio and therefore the nitrate utilization in the mixed ���

surface layer. Large variations in δ15Nbulk were also recorded from 180 to 130 ka BP ���

(MIS 6), indicating a potential link to insolation and sea-level forcing and its related ���

feedbacks. Millennial-scale oscillations were observed in δ
15Nbulk and δ

13Cbulk that ���

might be related to Greenland interstadials. �	�

 �
�
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 ���

1. Introduction ���

The polar oceans are thought to have been more stratified during past glacial periods ���

and the breakdown of stratification in the Southern Ocean during interglacials has ���

been suggested as a potential control mechanism for the glacial-interglacial cycles in ���

atmospheric carbon dioxide (CO2) (for a review see Sigman et al., 2010). Recent ���

studies have found supporting evidence that past variations in stratification/ventilation ���

also occurred in the subarctic North Pacific with implications for ocean-atmosphere �	�



gas exchange (Jaccard et al., 2005, 2010; Brunelle et al., 2007, 2010; Galbraith et �
�

al., 2008a; Okazaki et al., 2010, 2012; Chikamoto et al., 2012; Menviel et al., 2012; ���

Rella et al., 2012; Jaccard and Galbraith, 2013; Max et al., 2014). ���

The modern subarctic North Pacific is characterized by a permanent halocline due to ���

a low-salinity surface layer that limits the exchange of nutrients between the surface ���

and subsurface and prevents the formation of deep water masses (e.g., Warren, ���

1983; Haug et al., 1999; Emile-Geay et al., 2003). At the same time high marine ���

productivity makes this area a net sink for atmospheric CO2 (Honda et al., 2002; ���

Takahashi et al., 2002b). However, the efficiency of the biological pump in the high-���

nutrient, low-chlorophyll (HNLC) regions of the subarctic North Pacific is reduced due �	�

to iron limitation (e.g., Tsuda et al., 2003), which results in incomplete nitrate �
�

utilization. ���

Sedimentary records from the North Pacific and its marginal seas consistently show ���

reduced contents of biogenic opal and barium, CaCO3, and organic carbon during ���

past glacial periods, indicating reduced biological export production (e.g., ���

Gorbarenko et al., 2002; Narita et al., 2002; Kienast et al., 2004; Nürnberg and ���

Tiedemann, 2004; Jaccard et al., 2005, 2010; Okazaki et al., 2005a; Shigemitsu et ���

al., 2007, 2008; Riethdorf et al., 2013a). Restricted marine productivity both in the ���

North Pacific and in the Antarctic sector of the Southern Ocean is attributed to (i) light ���

limitation due to extensive sea-ice coverage (Elderfield and Rickaby, 2000), or (ii) to �	�

enhanced stratification of the upper water column that suppressed nutrient supply to �
�

the euphotic zone (Francois et al., 1997). 	��

Studies investigating these hypotheses applied stable nitrogen isotope ratios (δ15N) 	��

to provide a link to the marine nutrient cycle, but they have been mostly focused on 	��

regions not influenced by seasonal sea-ice, which has the potential to modulate 	��

biological and terrigenous fluxes. In the NW Pacific the δ15N signal can be used as a 	��

proxy of surface nitrate utilization, whereas in the NE Pacific, it reflects variations in 	��

the composition of the subsurface nitrate pool (Brunelle et al., 2007; Galbraith et al., 	��

2008a). The available reconstructions of surface nitrate utilization in the Okhotsk and 	��

Bering seas indicate that in both marginal seas enhanced stratification during glacial 		�

intervals resulted in a reduced supply of nitrate to the surface and a more complete 	
�



utilization of surface nitrate because of the continued iron supply from atmospheric 
��

deposition (i.e., higher iron-to-nitrate ratio), thereby explaining the low glacial 
��

productivity (e.g., Brunelle et al., 2007, 2010; Kim et al., 2011; Khim et al., 2012). 
��

For the Bering Sea, recent studies have found indications for millennial-scale 
��

oscillations in export production and terrigenous matter supply, which might be 
��

connected to changes in stratification and/or sea-ice influence (Gorbarenko et al., 
��

2005, 2010b; Kim et al., 2011; Riethdorf et al., 2013a; Schlung et al., 2013). 
��

However, most of the available records of δ
15N are located in the southern Bering 
��

Sea and therefore not necessarily influenced by seasonal sea-ice. Moreover, the 
	�

records are restricted to ~120 ka BP and do not allow for a comparison between the 

�

glacial terminations, which due to the large amplitude of climate and environmental ����

changes are considered important periods for the understanding of the carbon cycle ����

(e.g., Yokoyama and Esat, 2011). Especially for Marine Isotope Stage 6 (MIS 6), ����

which in the Okhotsk Sea environment is characterized by rather extreme glacial ice ����

conditions with significantly increased accumulation rates of ice-rafted debris (IRD) ����

(Nürnberg et al., 2011), no records of δ15N are available. ����

Here, we present isotope geochemical records from a supposedly sea-ice influenced ����

site in the poorly studied western Bering Sea for the last 180 kyr in high-resolution ����

employing sedimentary carbon and nitrogen isotope ratios to reconstruct changes in ��	�

the contribution of terrestrial organic matter and surface nitrate utilization, ��
�

respectively. Our results, for the first time, provide information on nitrate utilization in ����

the Bering Sea beyond 120 ka BP and expand the hypothesis of glacial-interglacial ����

stratification changes to cold and warm intervals. Moreover, our record suggests that ����

millennial-scale climate oscillations occurred in the Bering Sea which might be ����

connected to Greenland interstadials. ����

 ����

2. Study area ����

The Bering and Okhotsk seas are marginal seas of the North Pacific, separated from ����

by the Aleutian and Kurile islands, respectively. They are bounded by the coasts of ��	�

eastern Siberia, the Kamchatka Peninsula and/or western Alaska. Wide and shallow ��
�



continental shelf areas are found in the northern Okhotsk and in the northern and ����

eastern Bering Sea (Figure 1). ����

With respect to surface circulation, waters from the North Pacific are transported ����

westward along the Aleutian islands by the Alaskan Stream and enter the Bering Sea ����

via the Aleutian passes. There, the Bering Slope Current (BSC) and the East ����

Kamchatka Current (EKC) form boundary currents (Stabeno et al., 1999). Surface ����

outflow is directed into the Arctic Ocean through the shallow (~50 m) Bering Strait, ����

whereas surface and deeper waters are transported back into the NW Pacific through ����

the deeper straits, mainly Kamchatka Strait (Figure 1). The EKC and the Oyashio ��	�

current flow southward and represent western boundary currents of the North Pacific ��
�

subpolar gyre. The Kurile straits provide entrance and exit pathways to the Okhotsk ����

Sea.  ����

Major climatic and oceanographic characteristics of the North Pacific realm are the ����

strong seasonality in sea surface temperatures (SST) and sea-ice formation, the ����

permanent halocline, and a pronounced oxygen minimum zone (OMZ). In the Bering ����

Sea sea-ice is present from September until July reaching its maximum distribution ����

during March/April (Tomczak and Godfrey, 1994; Niebauer et al., 1999). The sea-ice ����

formation is related to the interaction of the Siberian High and the Aleutian Low, ����

which results in the advection of cold Arctic air masses, subsequent cooling of the ��	�

sea surface, and strong winter mixing (Stabeno et al., 1999). Sea-ice is considered ��
�

as an important transport agent of terrigenous matter in the Okhotsk and Bering seas ����

(Nürnberg and Tiedemann, 2004; Nürnberg et al., 2011; Riethdorf et al., 2013a). ����

Geochemical results indicate that sediments on the eastern Bering Sea shelf and in ����

the Meiji Drift in the NW Pacific are supplied from Yukon–Bering Sea sources ����

(VanLaningham et al., 2009; Asahara et al., 2012; Nagashima et al., 2012). Based on ����

these results Riethdorf et al. (2013a) proposed that terrigenous matter entrained into ����

sea-ice by tidal pumping, suspension freezing, and beach-ice formation, was ����

transported from the eastern Bering Sea shelf to the location studied in this paper, ����

although a contribution by suspension load carried by the BSC could not be ��	�

excluded. ��
�



Although sea-ice formation and according brine rejection in the northern Okhotsk Sea ����

drive the modern ventilation of North Pacific Intermediate Water (NPIW) (e.g., ����

Yasuda, 1997; Yamamoto et al., 2001), the source of NPIW might have shifted to the ����

Bering Sea in the past (Matsumoto et al., 2002; Ohkushi et al., 2003; Tanaka and ����

Takahashi, 2005; Rella et al., 2012), where it nowadays resides at the depth of the ����

26.8 potential density (σΘ) surface in ~200-400 m (Roden, 1995; Macdonald et al., ����

2001). The OMZ is found beneath the NPIW with minimum dissolved oxygen ����

concentrations of ~15-20 µmol kg-1 at ~900-1100 m (Roden, 2000; Lehmann et al., ����

2005).  ��	�

In the Bering Sea, high marine productivity is observed, which is mainly associated ��
�

with shelf areas (e.g., Springer et al., 1996; Stabeno et al., 1999) and dominated by ����

diatoms. Major biological fluxes occur during spring/summer (mainly diatoms) and ����

late summer/early fall (coccolithophores and planktonic foraminifera) (Takahashi et ����

al., 2002a). Nutrients are consumed during the productive seasons and returned from ����

the subsurface by winter mixing. Although winter mixing supplies nutrients from the ����

subsurface into the euphotic zone, near-surface nutrients are not completely ����

consumed by phytoplankton during the productive seasons. Therefore, the western ����

Bering Sea studied here, as well as the central eastern and western parts of the ����

subarctic North Pacific are HNLC regions with perennially high surface nitrate ��	�

concentrations (e.g., Tyrrell et al., 2005) (Figure 1). As extensively discussed in ��
�

Brunelle et al. (2007, 2010) changes in the extent of surface nitrate utilization can be ����

reconstructed using records of δ15N, if the underlying assumptions include a constant ����

isotope effect for nitrate assimilation and little or no changes in the δ15N of the source ����

nitrate. There is evidence for the northward propagation of 15N-enriched nitrate from ����

the eastern tropical North Pacific along coastal North America (Liu and Kaplan, 1989; ����

Altabet et al., 1999; Kienast et al., 2002; Sigman et al., 2003). Hence, ����

paleoceanographic interpretations of sedimentary δ
15N have to consider changes in ����

the δ15N of the subsurface nitrate pool. ����

 ��	�

 ��
�

 �	��



3. Material and methods �	��

This study is based on 18.13 m-long piston core SO201-2-85KL (referred to as 85KL �	��

hereafter) recovered during R/V Sonne expedition SO201 KALMAR Leg 2 in 2009 �	��

(Dullo et al., 2009) from Shirshov Ridge, western Bering Sea (57°30.30'N, �	��

170°24.77'E, 968 m water depth; Figure 1). Sediments from this core mainly consist �	��

of terrigenous siliciclastic material bound to the clay- and silt-fractions, but layers of �	��

diatomaceous ooze are repeatedly intercalated. Carbonate preservation is poor and �	��

at best sporadic, and no sediments younger than 7.5 ka BP were recovered. �		�

 �	
�

3.1 Bulk sedimentary analyses (TOC, TN, δδδδ13Cbulk, δδδδ
15Nbulk) �
��

Total organic carbon (TOC) and total nitrogen (TN) concentrations, as well as �
��

sedimentary stable carbon (δ13Cbulk) and nitrogen (δ15Nbulk) isotope ratios were �
��

determined downcore (>9.1 ka BP) every 5 cm from a total of 357 bulk sediment �
��

samples. About 25 mg of freeze-dried, hand-ground (agate mortar) sediment was �
��

weighed into Ag capsules, acidified with 100 µl hydrochloric acid (3N) to remove �
��

inorganic carbon, and dried in a desiccator filled with phosphorus pentoxide and �
��

sodium hydroxide. To ensure complete combustion, the Ag capsules were �
��

subsequently wrapped into Sn capsules. TOC, TN, δ
13Cbulk, and δ

15Nbulk were �
	�

determined at the Center for Advanced Marine Core Research, Kochi University, �

�

using a Flash EA 1112 Series elemental analyzer (EA; Thermo Fisher Scientific, ����

USA) coupled with a Delta Plus Advantage isotope ratio mass spectrometer (IRMS; ����

Thermo Fisher Scientific, USA) via a Conflo III interface (He carrier). Stable isotope ����

results are reported in conventional δ-notation and referenced to the Vienna PeeDee ����

Belemnite (VPDB) standard and to atmospheric nitrogen. Molar TN/TOC ratios were ����

corrected for inorganic nitrogen compounds based on a linear regression between ����

TOC and TN following Goñi et al. (1998) (referred to as molar N/C ratios hereafter; ����

Figure 2). Analytical precision (1σ) was determined from two different standards (L-����

Alanine, n = 58; Sulfanilamide, n = 60) and was <2% RSD (relative standard ��	�

deviation) for TOC, <5% RSD for TN, ±0.01 for molar N/C ratio, ±0.14‰ for δ13Cbulk, ��
�

and ±0.29‰ for δ
15Nbulk. Reproducibility of the samples, determined from replicates ����

(1σ, n = 14), was ±0.01 wt.% for TOC and TN, ±0.01 for molar N/C ratio, ±0.11‰ for ����



δ
13Cbulk, and ±0.86‰ for δ15Nbulk. This rather high value for δ15Nbulk, being significantly ����

higher than instrumental precision, might be related to sample inhomogeneity and ����

potential alteration of the sedimentary organic matter during pre-analysis acid ����

treatment (Brodie et al., 2011a, 2011b). ����

 ����

3.2 Age model ����

The stratigraphic framework of 85KL is described in detail in Max et al. (2012) and ��	�

Riethdorf et al. (2013a). Briefly, X-ray fluorescence (XRF) and spectrophotometric ��
�

(color b*) core logging data were correlated to the δ
18O records of the NGRIP ice ����

core (NGRIP members, 2004; GICC05 timescale, Rasmussen et al., 2006) and the ����

Sanbao stalagmites (Wang et al., 2008). This approach was validated by benthic ����

δ
18O stratigraphy, magnetostratigraphy, accelerator mass spectrometry (AMS) ����

radiocarbon dating of planktonic foraminifera, and intercore correlations to ����

neighbouring sediment cores. Linear sedimentation rates vary between 4 and 23 cm ����

kyr-1 (average of ~12 cm kyr-1), which translates into a submillennial time-resolution ����

for our reconstructions. ����

 ��	�

3.3 Existing data ��
�

For comparison we used logging data and geochemical results reflecting changes in ����

export production and terrigenous matter supply already available for core 85KL. ����

Method details are given elsewhere (Max et al., 2012; Riethdorf et al., 2013a, ����

2013b). In summary, light and color reflectance were measured directly after core ����

recovery every 1 cm using a Minolta CM 508d hand-held spectrophotometer and ����

converted into Commission Internationale de l'Éclairage (CIE) L*, a*, and b* color ����

space. XRF scanning for elements Al through to Ba was performed at 1 cm sampling ����

resolution using the Avaatech XRF core scanner at Alfred Wegener Institute for Polar ����

and Marine Research, Bremerhaven. Molybdate-blue spectrophotometry was used to ��	�

determine biogenic opal concentrations (after Müller and Schneider, 1993), and ��
�

concentrations of CaCO3 were calculated from the difference of total carbon (TC) and ����

TOC previously determined using a Carlo Erba CNS analyzer (model NA-1500) at ����



GEOMAR, Kiel. The relative amount of siliciclastics was calculated by subtracting the ����

sum of CaCO3, TOC, and opal concentrations from a total of 100 wt.%. Records of ����

XRF Ca/Ti log-ratios, XRF Br count rates (in counts per second, cps), and color b* ����

correlated with CaCO3 (R2 = 0.65), TOC (R2 = 0.64), and opal (R2 = 0.61), ����

respectively. This finding is in agreement with other studies linking biogenic CaCO3 ����

with normalized XRF records of Ca (Jaccard et al., 2005), TOC with biophilic Br ����

(Ziegler et al., 2008), and opal and organic matter content with color b* (Debret et al., ��	�

2006). ��
�

 ����

3.4 Reconstruction of export production ����

The use of CaCO3, TOC, and opal to reconstruct changes in export production is ����

subject to specific restrictions. CaCO3, especially in the North Pacific, is influenced ����

by carbonate dissolution and might be more indicative of changes in the bottom ����

water calcite saturation state (e.g. Jaccard et al., 2005). With respect to TOC, it is ����

necessary to discriminate between marine and terrestrial carbon sources. The most ����

often used proxy for reconstructions of paleo-export production in the North Pacific ����

realm is biogenic opal (e.g. Kienast et al., 2004).  ��	�

In paleoceanography, fluxes are usually reconstructed using accumulation rates ��
�

rather than proxy concentrations. However, for the North Pacific and Bering Sea ����

several studies provide evidence for the similar evolution of concentration and ����

accumulation records of biogenic components (e.g. Crusius et al., 2004; Brunelle et ����

al., 2007, 2010). Here, we used dry bulk density measurements (Riethdorf et al., ����

2013a) to calculate bulk mass accumulation rates (AR Bulk, in g cm-2 kyr-1), as well ����

as proxy accumulation rates for CaCO3, TOC, opal, and siliciclastics. The result is ����

shown in Figure 3, clearly demonstrating that sedimentation at Site 85KL is ����

dominated by siliciclastic input. Overall, concentrations of the biogenic components ����

are low, but opal concentrations and opal accumulation rates show a positive linear ��	�

relationship (R2 = 0.49). We therefore assume in this paper that at Site 85KL ��
�

concentrations of opal and color b* logging data are related to export production. ����

 ����

 ����



4. Results ����

4.1 Export production and terrigenous matter supply ����

In general, concentrations of CaCO3, TOC, and opal, as well as their approximating ����

logging data show increased values during warm intervals (MIS 5.5, 5.3, 5.1, and 1) ����

and Greenland interstadials (GI), but low values during cold intervals (MIS 6, 5.4, 5.2, ����

4, and 2) and Greenland stadials (GS) (Figure 4; Riethdorf et al., 2013a). Because of ��	�

sedimentary dilution, the proxy records reflecting terrigenous matter supply ��
�

(%Siliciclastics, XRF data of Al) have an inversed shape with respect to the records �	��

reflecting export production. Our EA-IRMS-based TOC results are in excellent �	��

agreement with those of Riethdorf et al. (2013a) and in higher temporal resolution �	��

extend the respective record by ~30 kyr into MIS 6. The temporal evolution of TOC �	��

recorded during MIS 6 strongly corresponds to that observed in color b*, and, to a �	��

lesser degree, in XRF Ca/Ti log-ratios and Br count rates (Figure 4). With respect to �	��

TOC concentrations, MIS 6 is characterized by a strong variability within the range of �	��

~0.4 to ~1.7 wt.%, showing several short-lived oscillations and highest �	��

concentrations during ~156-137 ka BP. �		�

 �	
�

4.2 δδδδ
13Cbulk, δδδδ

15Nbulk, molar N/C ratios, and estimation of the terrestrial organic �
��

matter fraction (mterr) �
��

Values for δ13Cbulk (of TOC) and for δ15Nbulk (of TN) ranged from -25.4 to -21.9‰ and �
��

from 1.7 to 7.5‰, respectively, and molar N/C ratios varied between 0.04 and 0.11 �
��

(Table 1; Figures 5 and 6). In general, δ13Cbulk and molar N/C ratios are more positive �
��

during warm intervals (MIS 5.5, 5.3, 5.1, 3, and 1) and show pronounced, but short-�
��

lived maxima during GI, which especially for δ13Cbulk exceed analytical precision and �
��

reproducibility. The cold intervals (MIS 5.4, 5.2, and 4) and some GS are �
��

characterized by decreases in both proxies. A different temporal evolution is �
	�

recorded for δ15Nbulk. The base of core 85KL shows δ15Nbulk values of ~5-6‰, which �

�

is followed by a sharp decrease at ~172 ka BP to values of ~2-3‰ (Figure 6). ����

Subsequently, δ
15Nbulk again increases until another sudden drop of ~3‰ ����

characterizes the transition from MIS 6 to 5.5 (Termination II). During the last ����



interglacial δ
15Nbulk remained low at ~3‰ but it decreased even further to minimum ����

values of 1.7‰ at the beginning of cold MIS 5.4. After MIS 5.4, a long-term trend ����

toward higher values that continues into the early Holocene is observed. In between, ����

increasing values were recorded during cold MIS 5.2 and 4, whereas δ
15Nbulk ����

decreased (MIS 5.1) or remained almost constant (MIS 5.3 and 3) during warm ����

stages. The transition from MIS 2 to 1 (Termination I) is characterized by local ��	�

minima (~4-5‰) during the cold phases of Heinrich Stadial 1 (HS1; 18.0-14.7 ka BP, ��
�

Sarnthein et al., 2001) and the Younger Dryas (YD; 12.9-11.7 ka BP, Blockley et al., ����

2012), and by an intercalated pronounced maximum during the Bølling-Allerød warm ����

phase (B/A; 14.7-12.9 ka BP, Blockley et al., 2012) (up to 6.8‰). Subsequent to the ����

YD, δ
15Nbulk continuously increased until highest values of 7.5‰ were recorded ����

during the early Holocene (~10.1 ka BP). Notably, the δ
15Nbulk record also features ����

short-lived maxima during GI, which, however, must be considered insignificant with ����

respect to reproducibility. ����

Assuming that the geochemical and isotopic sedimentary composition represents a ����

mixture of marine and terrestrial organic matter we applied a linear mixing model to ��	�

estimate the fraction of terrestrial-derived organic matter (mterr) using hypothetical ��
�

endmember compositions. We therefore followed the results of Walinsky et al. ����

(2009). This approach has recently been applied to a sediment core from the ����

northern Gulf of Alaska (Addison et al., 2012). Our Holocene samples lie within the ����

ranges reported by Smith et al. (2002) for surface sediment samples from the ����

southeastern Bering Sea shelf, whereas our glacial samples compare to terrigenous ����

particulate organic matter (POM) from the Yukon River (Guo and Macdonald, 2006) ����

(Figure 5). Accordingly, we assume that the most likely organic matter sources for ����

our site are marine phytoplankton (δ13C: -22 to -20‰; δ
15N: >5‰; molar N/C ratio: ����

0.10 to 0.15), soil (δ13C: -26.5 to -25.5‰; δ
15N: 0 to 1‰; molar N/C ratio: 0.08 to ��	�

0.10), and vascular plant detritus (VPD; δ13C: -27 to -25‰; δ15N: 0 to 1‰; molar N/C ��
�

ratio: 0 to 0.05) (Meyers, 1994; McQuoid et al., 2001; Geider and La Roche, 2002; ����

Smith et al., 2002; Guo et al., 2004; Gaye-Haake et al., 2005; Guo and Macdonald, ����

2006; Walsh et al., 2008, and references therein) (Figure 5; Table 2). With the ����

influence of soil considered insignificant, mterr was calculated as: ����



mterr = (Asample - Amar) / (Aterr - Amar)  (Eq. 1) ����

In Equation 1 A refers to the δ
13Cbulk or molar N/C ratio of the sample and the ����

respective average values for the assumed marine and terrestrial endmember ����

composition summarized in Table 2. We preferred using molar N/C over C/N ratios, ����

because mixing lines based on C/N are reported to underestimate the fraction of ��	�

terrestrially derived organic carbon (Perdue and Koprivnjak, 2007). This approach ��
�

resulted in similar values but in part different temporal evolutions of the respective ����

mterr records, which is attributed to the low variability in molar N/C ratios. mterr varied ����

between ~10% and ~90% with average values of ~40-50% (Table 1). It was lowest ����

during warm intervals (MIS 5.5, 5.3, 5.1, 3, and 1) and GI, when marine productivity ����

was high. Reductions of up to 50% occurred during the transitions from cold to warm ����

intervals, whereas pronounced but short-lived increases of ~20% seem to ����

correspond to GS (Figure 6). In the discussion we refer to mterr derived from δ13Cbulk. ����

 ����

5. Discussion ��	�

5.1 The δδδδ15Nbulk signal and potential alteration ��
�

δ
15Nbulk values reflect the isotopic signature of the export flux of organic matter plus ����

any secondary alteration of this signal during sinking and burial (e.g., Galbraith et al., ����

2008b; Robinson et al., 2012, and references therein). Hence, interpretation of ����

variations in the δ15Nbulk record must consider changes in (i) the isotopic composition ����

of the subsurface nitrate pool, which is controlled by nitrogen fixation by diazotrophic ����

bacteria and by denitrification, (ii) the degree of nitrification and surface nitrate ����

utilization, and (iii) secondary alteration. ����

Nitrate is the primary nitrogen source for marine phytoplankton, which preferentially ����

incorporates isotopically light (14N-enriched) nitrate (Pennock et al., 1996; Waser et ��	�

al., 1998). In the Bering Sea the source nitrate is supplied to the surface from below ��
�

the euphotic zone with a modern value (δ15Nnitrate) of ~5.5‰ (Lehmann et al., 2005), ����

which is slightly higher than the global deep ocean average of ~5‰ because of ����

denitrification in the North Pacific (Sigman et al., 2000, Brunelle et al., 2007). ����

Nitrogen fixation results in δ15Nnitrate values that are isotopically light and close to that ����



of air (0‰; Carpenter et al., 1997), and it is the main reason for the low δ15N values ����

of nitrate and sinking detritus in the tropical/subtropical ocean basins (e.g., Somes et ����

al., 2010). Water column denitrification occurs under low dissolved oxygen ����

concentrations (<5 µmol l-1; Codispoti et al., 2001) and results in a 15N-enriched ����

nitrate pool (Barford et al., 1999). In this respect, δ
15N might also reflect redox ��	�

conditions in the past with higher values during bottom water suboxia (Galbraith et ��
�

al., 2004; Kashiyama et al., 2008; Jaccard and Galbraith, 2012; Robinson et al., ����

2012). Today, water column denitrification is mainly observed in the Arabian Sea, the ����

eastern tropical North Pacific, and in the eastern tropical South Pacific. Thus, the ����

export of 15N-enriched waters might result in a shift toward higher δ
15Nnitrate, as ����

observed along coastal North America in the subarctic NE Pacific (Liu and Kaplan, ����

1989; Altabet et al., 1999; Kienast et al., 2002; Sigman et al., 2003). However, ����

modern dissolved oxygen concentrations at Site 85KL lie above the denitrification ����

threshold. ����

Results from benthic foraminiferal assemblages from the same site (Ovsepyan et al., ��	�

2013) suggest oxidizing conditions in the surface sediment layer from MIS 3 to the ��
�

Last Glacial Maximum (LGM), but oxygen-depleted conditions during the mid-B/A �	��

and early Holocene. This is in agreement with Kim et al. (2011) who for Site PC23A �	��

reported on a dominance of oxic benthic foraminiferal species during MIS 2 and 3, �	��

but on dominantly dysoxic species during the B/A, early Holocene, and GI. These �	��

observations and our proxy records for export production indicate the presence of �	��

mostly oxic bottom waters and strongly reduced export of organic matter during most �	��

of the past 180 kyr, arguing against a significant impact of water column �	��

denitrification on δ15Nbulk. Over the last 180 kyr, one can expect a slightly higher δ15N �	��

of nitrate during warm stages because of the greater extent of denitrification in the �		�

North Pacific. The isotopic impact of such increased denitrification during warm �	
�

stages is thought to be relatively equal to the one observed today (~0.5‰: Lehmann �
��

et al., 2005). This shift toward heavier δ15N is opposite to the expected isotopic effect �
��

of decreased nitrate utilization during interglacials. Thus, the relatively small increase �
��

in δ15Nbulk during warm stages (~0.5‰) should not mask the larger isotopic variation �
��

expected from the change in nitrate utilization (Brunelle et al., 2007, and references �
��

therein). Thus, we are confident that the observed variations in our δ
15Nbulk can be �
��



used to assess relative changes in the utilization of nitrate in the Bering Sea surface �
��

water, except for periods where dysoxia were locally present. During phases of �
��

locally enhanced export production and oxygen-depleted bottom water conditions, as �
	�

recorded during the B/A and the early Holocene, as well as during GI, denitrification �

�

might have resulted in a shift toward heavier δ
15Nbulk values. Because we can not ����

isolate this signal in our record, our nitrate utilization estimates for these periods ����

might not be accurate due to potential changes in the δ
15N signature of the source ����

nitrate ����

Nitrate utilization is incomplete in the modern subarctic North Pacific and in the ����

Bering Sea. Accordingly, the isotopic value of the export flux of organic matter ����

(δ15Nexport) is lighter than that of δ15Nnitrate (Altabet and Francois, 1994; Sigman et al., ����

1999; Needoba et al., 2003; Galbraith et al., 2008a). The difference between ����

δ
15Nnitrate and δ15Nexport is primarily controlled by the nitrate utilization and decreases ��	�

as it becomes more complete and in most of the global ocean the difference is zero ��
�

due to almost complete utilization (Altabet et al., 1999; Thunell et al., 2004). We can ����

calculate δ
15Nexport for the expected integrated organic nitrogen export at Site 85KL ����

assuming Rayleigh fractionation kinetics (Altabet and Francois, 1994; Mariotti et al., ����

1981) after: ����

δ
15Nexport = δ15Nnitrate + f / (1 - f) ε ln (f)  (Eq. 2) ����

In Equation 2 f is the fraction of unutilized nitrate (i.e., [NO3
-]summer / [NO3

-]winter) and ε ����

is the isotope effect for nitrate incorporation by phytoplankton, which was assumed to ����

be constant at ~5‰ for simplification (Brunelle et al., 2007, 2010). Using a modern ����

average for f of 0.16 (84% utilization), estimated from WOA 2009 surface nitrate ��	�

concentrations (Garcia et al., 2010), gives δ
15Nexport = ~3.8‰ for our site, which is ��
�

1.7‰ lower than the modern δ15Nnitrate. Unfortunately, no coretop δ15Nbulk results are ����

available for verification at our site. ����

Alternatively, secondary alteration (preferential loss of organic nitrogen, leakage of ����

ammonium into pore waters, ammonium absorption into clay minerals, ����

winnowing/size fractionation) might have raised the modern coretop δ
15N value. In ����

general, however, alteration of the δ
15Nbulk from that of the sinking flux is not ����



considered to have a considerable influence in organic-rich sediments from high-����

accumulation regions with low contributions of inorganic nitrogen compounds (for a ����

review see Robinson et al., 2012). Core 85KL has rather high average TOC ��	�

concentrations (~0.9 wt.%), whereas TIN is low at ~0.017 wt.% (Figure 2a), and the ��
�

relationship between TN and δ
15Nbulk is only weak (R2 = 0.24; Figure 2b), which ����

argues against alteration. Moreover, in comparison with other Bering Sea records ����

using δ
15N as a proxy for nitrate utilization (Brunelle et al., 2007, 2010; Kim et al., ����

2011; Schlung et al., 2013) our δ
15Nbulk record generally shows a similar evolution ����

(Figure 7). Notably, at our study site δ
15Nbulk values >5.5‰ were mainly recorded ����

during Termination I, which, in accordance with the previously mentioned studies is ����

more likely attributed to enhanced deglacial water column denitrification. ����

Finally, there might have been influence from terrestrial nitrogen, since our estimates ����

for mterr suggest significant average contributions (~40-50%) of terrestrial organic ��	�

matter in Shirshov Ridge sediments. In this respect, variations in δ15Nbulk might reflect ��
�

changes in the supply of terrestrial nitrogen. However, for the estimation of mterr we ����

assumed that the δ
15Nbulk of terrestrial organic matter is lower than that of marine ����

organic matter. If there was considerable influence from terrestrial nitrogen we would ����

expect a strong positive relationship between molar N/C ratios and δ15Nbulk, which is ����

not observed (R2 = 0.10). Accordingly, although Site 85KL is characterized by overall ����

high mterr values with a strong downcore variability, there seems to have been no ����

significant influence of mterr on the δ
15Nbulk signal, which might be explained by an ����

only low fraction of terrestrial nitrogen. We therefore consider the influence of ����

secondary alteration and contamination from terrestrial nitrogen on the δ15Nbulk signal ��	�

as insignificant and in the following discuss variations in δ
15Nbulk by means of ��
�

changes in surface nitrate utilization. ����

 ����

5.2 Cold and warm intervals of the past 180 kyr ����

At Site 85KL, glacial periods, specifically cold intervals (MIS 6, 5.4, 5.2, and 4 to 2), ����

were characterized by significantly reduced export production and enhanced ����

terrigenous matter supply (Riethdorf et al., 2013a; Figure 4), which is in agreement ����



with other studies from the subarctic North Pacific (e.g., Kienast et al., 2004; Jaccard ����

et al., 2005), the Okhotsk Sea (e.g., Narita et al., 2002; Nürnberg and Tiedemann, ����

2004; Okazaki et al., 2005b; Nürnberg et al., 2011), and the Bering Sea (e.g., ��	�

Okazaki et al., 2005a; Brunelle et al., 2007; Kim et al., 2011). This is supported by ��
�

our reconstruction of mterr indicating an average terrestrial organic matter fraction of ����

~40-50%, which is significantly reduced only during warm intervals. Today, the ����

organic matter in Bering Sea sediments is dominantly of marine origin (Méheust et ����

al., 2013). The glacial terrigenous matter source of Bering Sea sediments is under ����

debate, but there are indications that they originate from source rocks drained by the ����

Yukon River (VanLaningham et al., 2009), and/or from sea-ice rafting in the NE ����

Bering Sea (Riethdorf et al., 2013a). ����

For the Bering and Okhotsk seas the outlined observations were explained by ����

enhanced sea-ice influence and stronger stratification of the upper water column ��	�

during cold climate conditions restricting marine productivity (Nürnberg and ��
�

Tiedemann, 2004; Brunelle et al., 2007, 2010; Kim et al., 2011; Khim et al., 2012; ����

Riethdorf et al., 2013a). This restriction results from the extended sea-ice season and ����

coverage and the subsequent limitation of light availability and vertical mixing ����

(nutrient supply), but temperature limitation is likely to have played an additional role. ����

An extended Bering Sea sea-ice coverage during cold phases is supported by ����

reconstructions from diatom assemblages (Katsuki and Takahashi, 2005) and from ����

the diatom-derived, highly branched isoprenoid sea ice biomarker (IP25) (Max et al., ����

2012). ����

Records of sedimentary and diatom-bound δ
15N imply enhanced surface nitrate ��	�

utilization as a result of stronger upper water column stratification in the Bering Sea, ��
�

especially during MIS 3 and 2 (Brunelle et al., 2007, 2010; Kim et al., 2011). Similar �	��

observations are reported for the Okhotsk Sea (Brunelle et al., 2010; Khim et al., �	��

2012) and the subarctic NW Pacific (Galbraith et al., 2008a; Brunelle et al., 2010), �	��

indicating that these regions were not always HNLC. This shift towards higher δ15N in �	��

MIS 3 is, however, not observed at IODP Site U1340 at the northeastern flank of �	��

Bowers Ridge (Schlung et al., 2013). Instead, a sharp decrease in δ
15Nbulk was �	��

recorded at this site at ~55 ka BP, which might be related to local stratification �	��

changes, or to the influence of turbidites that are reported to compromise records �	��



recovered from that area (Nakatsuka et al., 1995). Our δ
15Nbulk results are in �		�

accordance with the former Bering Sea studies confirming enhanced nitrate �	
�

utilization during cold intervals, but they seem to reveal a more complex development �
��

of stratification and for the first time provide information for MIS 6. �
��

At the base of core 85KL (~180-173 ka BP), early MIS 6 is characterized by high �
��

δ
15Nbulk values indicating almost complete nitrate utilization, when export production �
��

was reduced, but maintained. Relatively high δ
15Nbulk during MIS 6 were also �
��

recorded at Okhotsk Sea sites GGC27 (Brunelle et al., 2010) and GC9A (Khim et al., �
��

2012), as well as at ODP Site 882 and at Site MD01-2416 (Galbraith et al., 2008a). �
��

Hence, low insolation and weak seasonal contrasts most probably caused a �
��

prolonged sea-ice season, extended sea-ice coverage, and suppressed vertical �
	�

mixing. At ~172 ka BP, when Northern Hemisphere summer insolation had a local �

�

maximum, a sharp decrease in δ
15Nbulk implies a sudden drop in nitrate utilization ����

(from ~100% to ~50-70%) in the Bering Sea (Figure 6). At the same time export ����

production was increased, whereas mterr decreased. This might be explained by a ����

shortened sea-ice season, reduced sea-ice coverage, and enhanced winter mixing ����

due to stronger seasonal contrasts, which increased the nutrient supply from the ����

subeuphotic zone.  ����

Accordingly, we speculate that changes in nitrate utilization are strongly affected by ����

insolation forcing and a feedback by sea-ice processes that drive the extent of ����

vertical mixing during winter, as well as the input of terrestrial organic matter. ��	�

Dominant climate control via insolation has already been proposed for the Okhotsk ��
�

Sea (Gorbarenko et al., 2010a, 2012). The long-term increase in nitrate utilization ����

after ~172 ka BP until Termination II, which is also observed at the Okhotsk Sea and ����

NW Pacific sites (Figure 7), as well as the long-term increase from MIS 5.4 until ����

Termination I might be explained by increasingly fostered stratification (i.e. a ����

reduction in the supply of nutrients into the euphotic zone), which is finally subject to ����

a 'breakdown' during the deglaciations. It is beyond the scope of this paper to ����

decipher the underlying causes of this deglacial breakdown, but increasing insolation ����

resulting in a reduced sea-ice season and strengthened winter mixing, is a likely ����

contributing factor. ��	�



The observation that the strongest maxima in Northern Hemisphere summer ��
�

insolation, mainly those of warm intervals (MIS 5.5, 5.3, 5.1, and 1), are reflected by ����

maxima in export production (Figure 4), minima in mterr, and decreasing or constant ����

δ
15Nbulk (Figure 6), supports the view that insolation changes affect nutrient-limited ����

marine productivity by a feedback in sea-ice processes and winter mixing. It is also in ����

agreement with previously published concepts proposed to explain glacial-interglacial ����

changes in the Okhotsk (Seki et al., 2004; Okazaki et al., 2005b; Khim et al., 2012) ����

and Bering seas (Nakatsuka et al., 1995; Kim et al., 2011). When applying Equation ����

2, our δ15Nbulk record indicates increasing nitrate utilization during cold MIS 5.4 (from ����

~50 to ~90%), MIS 5.2 (from ~90 to ~100%), and MIS 4 (from ~80 to ~93%), and ��	�

almost complete utilization during MIS 3 and 2 (~93-100%). On the other hand, ��
�

decreasing or constant nitrate utilization was recorded during warm MIS 5.5 (from ����

~97 to ~62%), MIS 5.3 (~90%), and MIS 5.1 (from ~100 to ~80%). This suggests that ����

stratification was fostered during cold intervals, but weakened during warm intervals ����

due to the processes outlined above. ����

The low glacial δ15Nbulk values of ~2-3‰ at the beginning of MIS 5.4, of ~3.5-4.5‰ at ����

the beginning of MIS 4, and the concurrent increases in mterr (Figure 6) might be ����

explained (i) by a higher contribution of (15N-depleted) terrestrial organic matter, or (ii) ����

by stronger vertical mixing. We disregard the first possibility, because we already ����

discarded the potential effect of terrestrial nitrogen on the δ
15Nbulk signal (Section ��	�

5.1). Stronger vertical mixing in the Bering Sea during MIS 5.4 and 4 might be related ��
�

to the increased formation and/or ventilation of intermediate waters as inferred from ����

neodymium isotope ratios by Horikawa et al. (2010). The authors suggested that sea-����

ice formation and according brine rejection led to the subduction of surface waters to ����

intermediate depths. Enhanced formation of sea-ice, acting as the transport agent for ����

terrestrial organic matter would be in accordance with this assumption and explain ����

the higher mterr values. Other studies support the idea of well-ventilated intermediate ����

waters in the Bering Sea and North Pacific during glacial times (Ohkushi et al., 2003; ����

Itaki et al., 2009; Kim et al., 2011) and during severe stadial episodes (Rella et al., ����

2012). The enhanced formation and/or ventilation of intermediate waters at the end ��	�

of MIS 6 and during the LGM implied by the record of Horikawa et al. (2010) is not ��
�

reflected in our δ15Nbulk record, which rather suggests strong stratification during that ����



time. However, these observations are not necessarily contradictory, since ����

intermediate waters could have been formed outside the still-stratified Bering Sea. In ����

fact, recent reconstructions of past ventilation changes in the subarctic North Pacific ����

using radiocarbon-derived ventilation ages in combination with epibenthic stable ����

carbon isotope ratios point to the Okhotsk Sea as the source region of intermediate ����

waters during HS1 and the YD (Max et al., 2014).  ����

In addition to insolation forcing, sea-level changes might have influenced the extent ����

of stratification in the Bering Sea. Today, the only shallow (~50 m) Bering Strait ��	�

allows for oceanic communication between the North Pacific and the N Atlantic. ��
�

During glacial times the closed Bering Strait prevented the flux of relatively fresh ����

waters into the Atlantic, which is thought to have affected the Atlantic meridional ����

overturning circulation (Hu et al., 2010). Lower glacial sea-level is also likely to have ����

reduced the inflow of Alaskan Stream waters into the Bering Sea (Gorbarenko et al., ����

2005; Tanaka and Takahashi, 2005). As suggested by relative sea-level ����

reconstructions (e.g., Waelbroeck et al., 2002; Yokoyama and Esat, 2011), the ����

Bering Strait was closed during MIS 6 and in between MIS 4 to 2 until ~12-11 ka BP ����

(Keigwin et al., 2006) (Figure 6). Our δ15Nbulk values indicate almost complete nitrate ����

utilization during late MIS 6 (~150-130 ka BP) and during MIS 3 and 2 as a result of ��	�

strong stratification. During this time a closed Bering Strait is likely to have fostered ��
�

stratification due to the pooling of the relatively fresh waters within the Bering Sea, ����

which would have resulted in a strengthened pycnocline. Support for this view and for ����

fresher glacial conditions in the Bering Sea comes from diatom and radiolarian ����

assemblages (Sancetta, 1983; Katsuki and Takahashi, 2005; Tanaka and Takahashi, ����

2005). Notably, during MIS 3 and 2 the δ
15Nbulk values recorded at Shirshov Ridge ����

are on average ~1‰ lower than at Bowers Ridge Site 17JPC and ~0.5‰ lower than ����

at Site PC24A (Figure 7). This might indicate that stratification in the Bering Sea was ����

regionally different and more pronounced in the South, or that influence from ����

denitrification resulted in the heavier δ15N values. ��	�

 ��
�

 �	��

 �	��



5.3 Deglacial and interglacial conditions �	��

In our records, the deglaciations are characterized by the transition from the glacial �	��

situation of pronounced stratification with almost complete nitrate utilization and low �	��

export production toward the interglacial situation of reduced stratification, high �	��

marine productivity, and reduced terrestrial input. Yet, Termination II and Termination �	��

I show some notable differences. During Termination I our δ
15Nbulk record is �	��

characterized by an initial decrease, which might correspond to the HS1 cold phase, �		�

subsequent local maxima during the B/A and the early Holocene warm phases, and �	
�

an intercalated minimum during the YD (Figure 6). The same temporal evolution was �
��

reported for sedimentary and diatom-bound δ15N at Bering Sea sites 17JPC (Brunelle �
��

et al., 2007, 2010) and PC24A (Kim et al., 2011). The B/A-peak, occurring �
��

simultaneously with a rise in export production, is found in several other records from �
��

the North Pacific realm and related to enhanced denitrification (Keigwin et al., 1992; �
��

Emmer and Thunell, 2000; Ternois et al., 2001; Kienast et al., 2002; Galbraith et al., �
��

2008a; Kao et al., 2008; Brunelle et al., 2007, 2010; Addison et al., 2012; Khim et al., �
��

2012; Schlung et al., 2013). �
��

Notably, mterr shows a local maximum during HS1 at Site 85KL. Hence, the initial �
	�

decrease in δ
15Nbulk might be related to higher terrestrial input or to lower nitrate �

�

utilization due to weakened stratification. However, the latter should have resulted in ����

higher export production, which is not observed at our site. This drop is not fully ����

understood and alternative explanations include changes in δ15Nnitrate, iron limitation, ����

and light limitation (Brunelle et al., 2007, 2010; Lam et al., 2013). Light limitation by ����

expanded sea-ice coverage is supported by the qualitative detection of IP25 in ����

western Bering Sea sediments during HS1 and the YD (Max et al., 2012). ����

During the B/A and the early Holocene our δ
15Nbulk values exceeded the modern ����

δ
15Nnitrate value, supporting an increase in denitrification. At the same time a shift ����

toward oxygen-depleted bottom water conditions is inferred from benthic foraminiferal ��	�

assemblages (Kim et al., 2011; Ovsepyan et al., 2013), which is in agreement with ��
�

the proposed expansion of the OMZ and the occurrence of laminated sediments ����

during warm intervals (e.g., Zheng et al., 2000; van Geen et al., 2003; Cook et al., ����

2005; Kuehn et al., 2014). A recent comparison between alkenone- and Mg/Ca-����



based paleotemperature estimates suggests enhanced thermal mixed-layer ����

stratification in the western Bering Sea during the B/A (Riethdorf et al., 2013b), ����

implying that at least some of the recorded δ
15Nbulk increase is due to stronger ����

surface nitrate utilization. Recently, Lam et al. (2013) suggested two stepwise events ����

starting with deep convection initialized at ~18 ka BP increasing the nutrient supply ����

but inducing light limitation, and subsequent meltwater-induced stratification resulting ��	�

in bloom conditions and leaving surface waters enriched in nutrients. The drop in ��
�

δ
15Nbulk observed during the YD in hand with decreasing SSTs and the presence of ����

IP25 (Max et al., 2012) argues for a similar situation as recorded during HS1. ����

Termination II differs from Termination I at Site 85KL in such that the δ15Nbulk values ����

are lower and presumably not affected by denitrification. An early deglacial δ
15Nbulk ����

minimum at ~133 ka BP, followed by a local maximum at ~131 ka BP might hint ����

toward analogs of the HS1 and the B/A, respectively. The subsequent drop in δ15Nbulk ����

into MIS 5.5 reflecting the 'breakdown' of glacial stratification is sudden and ����

accompanied by the decrease in both, mterr and bottom water oxygenation then ����

prevailing during the penultimate interglacial (Figure 6). Notably, this drop from ��	�

relatively high MIS 6 values occurred ~5 kyr before the maximum in insolation was ��
�

reached, but its timing is comparable to that recorded in the NW Pacific. In the ����

Okhotsk Sea it seems to have occurred significantly earlier at ~147-141 ka BP ����

(Figure 7). A respective drop in δ15Nbulk during Termination I was not recorded at Site ����

85KL until ~9.1 ka BP, while at Bowers Ridge sites U1340 (Schlung et al., 2013) and ����

17JPC (Brunelle et al., 2007) it occurred directly after the B/A maximum. ����

 ����

5.4 Millennial-scale oscillations ����

Riethdorf et al. (2013a) reported on millennial-scale oscillations in core 85KL, thought ����

to reflect increased export production and sudden sea-ice melt, which might be ��	�

connected to GI (Dansgaard-Oeschger events; e.g., Dansgaard et al., 1993). Similar ��
�

observations are reported for other sediment cores from the Bering Sea (Gorbarenko ����

et al., 2005, 2010b; Kim et al., 2011; Rella et al., 2012; Schlung et al., 2013) and the ����

Okhotsk Sea (Gorbarenko et al., 2007, 2010a, 2012), indicating warmer SSTs, ����

enhanced marine productivity, weak ventilation of intermediate waters, and poor ����



(dysoxic) dissolved oxygen conditions during interstadials. NE Pacific sediments ����

related to GI are in part laminated and suggested to reflect phases of weak ����

ventilation of NPIW and fluctuations in the strength of the OMZ (Behl and Kennett, ����

1996; Cannariato and Kennett, 1999; Hendy and Kennett, 2000, 2003). Results of ����

Ortiz et al. (2004) from a core off Baja California implied that elevated marine ��	�

productivity was caused by enhanced nutrient flux to surface waters. ��
�

In the Bering Sea higher interstadial δ
15Nbulk values were explained by Kim et al. ����

(2011) by increased marine productivity as a result of reduced sea-ice influence and ����

a strengthened BSC. They also suggested that stronger inflow of water masses from ����

the Gulf of Alaska (Gorbarenko et al., 2005) resulted in enhanced nutrient supply to ����

Bering Sea surface waters. Schlung et al. (2013) attributed higher δ
15Nbulk and ����

concurrent minima in planktonic δ
13C to amplified local upwelling of subsurface ����

nitrate rather than to increased nitrate utilization. Our data show short-lived maxima ����

in δ15Nbulk and concurrent minima in mterr during some, but not all, GI (1, 7, 8, 12, 17-����

20), and during MIS 6 (at ~133, ~148, and ~173 ka BP) when export production was ��	�

high (Figure 6). The opposite pattern was recorded when export production was low ��
�

during some GS (2, 7, 18, 20) and also during MIS 6 (at ~151, ~157, and ~170 ka ����

BP). Despite the low reproducibility of our δ15Nbulk results our data support the view of ����

increased interstadial marine productivity which led to stronger utilization of the ����

available nitrate in a still stratified upper water column. During interstadials warmer ����

SSTs most probably resulted in less sea-ice influence and reduced supply of ����

terrestrial organic matter. Conversely, during stadials strengthened sea-ice formation ����

and coverage is likely to have restricted marine productivity, led to enhanced ����

terrestrial organic matter supply to Bering Sea sediments, and resulted in better ����

ventilation of NPIW, potentially making the Bering Sea a proximate source of this ��	�

water mass as suggested by Rella et al. (2012). ��
�

 ����

6. Summary ����

We determined TN, TOC, δ13Cbulk and δ
15Nbulk in a core from the western Bering Sea ����

in high-resolution to reconstruct changes in surface nitrate utilization (stratification) ����

over the last 180 kyr. A linear endmember model was applied to assess the ����



contributions of marine- and terrestrial-derived organic matter. Besides the expected ����

difference between glacial and interglacial conditions reported for the subarctic NW ����

Pacific and its marginal seas, our results suggest a more complex evolution of ����

stratification with enhanced vertical mixing during warm intervals (MIS 5.5, 5.3, 5.1, ��	�

1), and stratification becoming fostered during cold intervals (MIS 6, 5.4, 5.2, 4-2). ��
�

This development is explained by insolation forcing and a feedback in sea-ice �	��

formation and the strength of winter mixing. In addition, sea-level changes might �	��

have further influenced the extent of stratification when the Bering Strait was closed �	��

and relatively fresh waters pooled in the Bering Sea. During warm intervals, �	��

variations in seasonal contrasts, sea-ice influence, and stratification resulted in �	��

enhanced export production and dominantly marine-derived organic matter, but less �	��

nitrate utilization due to better vertical mixing. Conversely, enhanced terrestrial-�	��

derived organic matter, most probably associated with sea-ice formation, low export �	��

production, and enhanced stratification characterized cold intervals of the past 180 �		�

kyr. Moreover, we present supporting evidence that millennial-scale climate �	
�

oscillations connected with Greenland interstadials occurred in the Bering Sea �
��

environment, and that sea-ice formation there influenced the ventilation of North �
��

Pacific Intermediate Water. �
��

 �
��

Acknowledgements �
��

Financial support for this study was provided by a Japan Society for the Promotion of �
��

Science (JSPS) short-term postdoctoral fellowship to J.-R.R. (grant no. PE12528). �
��

Additional support came from the "Funding Program for Next Generation World-�
��

Leading Researchers (NEXT Program GR031)" of JSPS, initiated by the Council for �
	�

Science and Technology Policy (CSTP), awarded to Y.Y. Core 85KL was recovered �

�

in the framework of the joint German-Russian research project KALMAR, funded by ����

the German Federal Ministry of Education and Research (BMBF, grant nos. ����

03G0672A and B). We thank N. Ohkouchi, N. Harada, Y. Okazaki, and H. Vollstaedt ����

for helpful discussions, as well as Christina Ravelo and the anonymous reviewer for ����

their fruitful comments that improved the manuscript. Supplementary data are ����



available via the PANGAEA Data Publisher for Earth & Environmental Science ����

(http://doi.pangaea.de/10.1594/PANGAEA.807383). ����

 ����

References ��	�

Addison, J.A., Finney, B.P., Dean, W.E., Davies, M.H., Mix, A.C., Stoner, J.S., ��
�

Jaeger, J.M., 2012. Productivity and sedimentary δ
15N variability for the last 17,000 ����

years along the northern Gulf of Alaska. Paleoceanography 27, PA1206. ����

doi:10.1029/2011PA002161. ����

Altabet, M.A., Francois, R., 1994. Sedimentary nitrogen isotopic ratio as a recorded ����

for surface ocean nitrate utilization. Global Biogeochem. Cy. 8 (1), 103-116. ����

Altabet, M.A., Pilskaln, C., Thunell, R., Pride, C., Sigman, D., Chavez, F., Francois, ����

R., 1999. The nitrogen isotope biogeochemistry of sinking particles from the margin ����

of the Eastern North Pacific. Deep-Sea Res. Pt. I 46, 655-679. ����

Asahara, Y., Takeuchi, F., Nagashima, K., Harada, N., Yamamoto, K., Oguri, K., ��	�

Tadai, O., 2012. Provenance of terrigenous detritus of the surface sediments in the ��
�

Bering and Chukchi Seas as derived from Sr and Nd isotopes: Implications for recent ����

climate change in the Arctic regions. Deep-Sea Res. Pt. II 61-64, 155-171. ����

doi:10.1016/j.dsr2.2011.12.004. ����

Barford, C.C., Montoya, J.P., Altabet, M.A., Mitchell, R., 1999. Steady-state nitrogen ����

isotope effects of N2 and N2O production in Paracoccus denitrificans. Appl. Environ. ����

Microb. 65 (3), 989-994. ����

Behl, R.J., Kennett, J.P., 1996. Brief interstadial events in the Santa Barbara basin, ����

NE Pacific, during the past 60 kyr. Nature 379, 243-246. ����

Blockley, S.P.E., Lane, C.S., Hardiman, M., Rasmussen, S.O., Seierstad, I.K., ��	�

Steffensen, J.P., Svensson, A., Lotter, A.F., Turney, C.S.M., Ramsey, C.B., ��
�

INTIMATE members, 2012. Synchronisation of palaeoenvironmental records over the ����

last 60,000 years, and an extended INTIMATE event stratigraphy to 48,000 b2k. ����

Quaternary Sci. Rev. 36, 2-10. doi:10.1016/j.quascirev.2011.09.017. ����



Brodie, C.R., Casford, J.S.L., Lloyd, J.M., Leng, M.J., Heaton, T.H.E., Kendrick, C.P., ����

Yongqiang, Z., 2011a. Evidence for bias in C/N, δ13C and δ15N values of bulk organic ����

matter, and on environmental interpretation, from a lake sedimentary sequence by ����

pre-analysis acid treatment methods. Quaternary Sci. Rev. 30, 3076-3087. ����

doi:10.1016/j.quascirev.2011.07.003. ����

Brodie, C.R., Heaton, T.H.E., Leng, M.J., Kendrick, C.P., Casford, J.S.L., Lloyd, J.M., ��	�

2011b. Evidence for bias in measured δ15N values of terrestrial and aquatic organic ��
�

materials due to pre-analysis acid treatment methods. Rapid Commun. Mass Sp. 25, ����

1089-1099. doi:10.1002/rcm.4970. ����

Brunelle, B.G., Sigman, D.M., Cook, M.S., Keigwin, L.D., Haug, G.H., Plessen, B., ����

Schettler, G., Jaccard, S.L., 2007. Evidence from diatom-bound nitrogen isotopes for ����

subarctic Pacific stratification during the last ice age and a link to North Pacific ����

denitrification changes. Paleoceanography 22, PA1215. doi:10.1029/2005PA001205. ����

Brunelle, B.G., Sigman, D.S., Jaccard, S.L., Keigwin, L.D., Plessen, B., Schettler, G., ����

Cook, M.S., Haug, G.H., 2010. Glacial/interglacial changes in nutrient supply and ����

stratification in the western subarctic North Pacific since the penultimate glacial ��	�

maximum. Quaternary Sci. Rev. 29, 2579-2590. ��
�

doi:10.1016/j.quascirev.2010.03.010. ����

Cannariato, K.G., Kennett, J.P., 1999. Climatically related millennial-scale ����

fluctuations in strength of California margin oxygen-minimum zone during the past 60 ����

k.y.. Geology 27 (11), 975-978. ����

Carpenter, E.J., Harvey, H.R., Fry, B., Capone, D.G., 1997. Biogeochemical tracers ����

of the marine cyanobacterium Trichodesmium. Deep-Sea Res. Pt. I 44 (1), 27-38. ����

Chikamoto, M.O., Menviel, L., Abe-Ouchi, A., Ohgaito, R., Timmermann, A., Okazaki, ����

Y., Harada, N., Oka, A., Mouchet, A., 2012. Variability in North Pacific intermediate ����

and deep water ventilation during Heinrich events in two coupled climate models. ��	�

Deep-Sea Res. Pt. II 61-64, 114-126. doi:10.1016/j.dsr2.2011.12.002. ��
�

Codispoti, L.A., Brandes, J.A., Christensen, J.P., Devol, A.H., Naqvi, S.W.A., Paerl, ����

H.W., Yoshinari, T., 2001. The oceanic fixed nitrogen and nitrous oxide budgets: ����

Moving targets as we enter the anthropocene?. Sci. Mar. 65 (Suppl. 2), 85-105. ����



Cook, M.S., Keigwin, L.D., Sancetta, C.A., 2005. The deglacial history of surface and ����

intermediate water of the Bering Sea. Deep-Sea Res. Pt. II 52, 2163-2173. ����

doi:10.1016/j.dsr2.2005.07.004. ����

Crusius, J., Pedersen, T.F., Kienast, S., Keigwin, L., Labeyrie, L., 2004. Influence of ����

northwest Pacific productivity on North Pacific Intermediate Water oxygen ����

concentrations during the Bolling-Allerod interval (14.7--12.9 ka). Geology 32 (7), ��	�

633-363. doi: 10.1130/G20508.1. ��
�

Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., ����

Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., ����

Bond, G., 1993. Evidence for general instability of past climate from a 250-kyr ice-����

core record. Nature 364, 218-220. ����

Debret, M., Desmet, M., Balsam, W., Copard, Y., Francus, P., Laj, C., 2006. ����

Spectrophotometer analysis of Holocene sediments from an anoxic fjord: Saanich ����

Inlet, British Columbia, Canada. Mar. Geol. 229, 15-28. ����

doi:10.1016/j.margeo.2006.01.005. ����

Dullo, W.-C., Baranov, B., van den Bogaard, C. (Eds.), 2009. FS Sonne ��	�

Fahrtbericht/Cruise Report SO201-2 KALMAR, Busan/Korea-Tomakomai/Japan, ��
�

30.08.-08.10.2009. IFM-GEOMAR Report 35, Leibniz Institute of Marine Sciences, �	��

Kiel, 233 pp. �	��

Elderfield, H., Rickaby, R.E.M., 2000. Oceanic Cd/P ratio and nutrient utilization in �	��

the glacial Southern Ocean. Nature 405, 305-310. �	��

Emile-Geay, J., Cane, M., Naik, N., Seager, R., Clement, A.C., van Geen, A., 2003. �	��

Warren revisited: Atmospheric freshwater fluxes and "Why is no deep water formed �	��

in the North Pacific". J. Geophys. Res. 108 (C6), 3178. doi:10.1029/2011JC001058. �	��

Emmer, E., Thunell, R.C., 2000. Nitrogen isotope variations in Santa Barbara Basin �	��

sediments: Implications for denitrification in the eastern tropical North Pacific during �		�

the last 50,000 years. Paleoceanography 15 (4), 377-387. �	
�

doi:10.1029/1999PA000417. �
��

Francois, R., Altabet, M.A., Yu, E.-F., Sigman, D.M., Bacon, M.P., Frank, M., �
��

Bohrmann, G., Bareille, G., Labeyrie, L.D., 1997. Contribution of Southern Ocean �
��



surface-water stratification to low atmosphere CO2 concentrations during the last �
��

glacial period. Nature 389, 929-935. �
��

Galbraith, E.D., Kienast, M., Pedersen, T.F., Calvert, S.E., 2004. Glacial-interglacial �
��

modulation of the marine nitrogen cycle by high-latitude O2 supply to the global �
��

thermocline. Paleoceanography 19, PA4007. doi:10.1029/2003PA001000. �
��

Galbraith, E.D., Kienast, M., Jaccard, S.L., Pedersen, T.F., Brunelle, B.G., Sigman, �
	�

D.M., Kiefer, T., 2008a. Consistent relationship between global climate and surface �

�

nitrate utilization in the western subarctic Pacific throughout the last 500 ka. 	���

Paleoceanography 23, PA2212. doi:10.1029/2007PA001518. 	���

Galbraith, E.D., Sigman, D.M., Robinson, R.S., Pedersen, T.F., 2008b. Nitrogen in 	���

past marine environments, in: Capone, D.G., Bronk, D.A., Mulholland, M.R., 	���

Carpenter, E.J. (Eds.), Nitrogen in the Marine Environment. Second Edition, Elsevier 	���

Inc., pp. 1497-1535. doi:10.1016/B978-0-12-372522-6.00034-7. 	���

Garcia, H.E., Locarnini, R.A., Boyer, T.P., Antonov, J.I., 2010. World Ocean Atlas 	���

2009, Volume 4: Nutrients (phosphate, nitrate, and silicate), in: Levitus, S. (Ed.), 	���

NOAA Atlas NESDIS 71. U.S. Government Printing Office, Washington, D.C., 184 	�	�

pp. 	�
�

Gaye-Haake, B., Lahajnar, N., Emeis, K.-Ch., Unger, D., Rixen, T., Suthhof, A., 	���

Ramaswamy, V., Schulz, H., Paropkari, A.L., Guptha, M.V.S., Ittekkot, V., 2005. 	���

Stable nitrogen isotopic ratios of sinking particles and sediments from the northern 	���

Indian Ocean. Mar. Chem. 96, 243-255. doi:10.1016/j.marchem.2005.02.001. 	���

Geider, R.J., La Roche, J., 2002. Redfield revisited: variability of C:N:P in marine 	���

microalgae and its biochemical basis. Eur. J. Phycol. 37, 1-17. 	���

doi:10.1017/S0967026201003456. 	���

Goñi, M.A., Ruttenberg, K.C., Eglinton, T.I., 1998. A reassessment of the sources 	���

and importance of land-derived organic matter in surface sediments from the Gulf of 	�	�

Mexico. Geochim. Cosmochim. Ac. 62 (18), 3055-3075. 	�
�

Gorbarenko, S.A., Khusid, T.A., Basov, I.A., Oba, T., Southon, J.R., Koizumi, I., 	���

2002. Glacial Holocene environment of the southeastern Okhotsk Sea: Evidence 	���



from geochemical and palaeontological data. Palaeogeogr. Palaeocl. 177, 237-263. 	���

doi:10.1016/S0031-0182(01)00335-2. 	���

Gorbarenko, S.A., Basov, I.A., Chekhovskaya, M.P., Southon, J., Khusid, T.A., 	���

Artemova, A.V., 2005. Orbital and millennium scale environmental changes in the 	���

southern Bering Sea during the last glacial-Holocene: Geochemical and 	���

paleontological evidence. Deep-Sea Res. Pt. II 52, 2174-2185. 	���

doi:10.1016/j.dsr2.2005.08.005. 	�	�

Gorbarenko, S.A., Goldberg, E.L., Kashgarian, M., Velivetskaya, T.A., Zakharkov, 	�
�

S.P., Pechnikov, V.S., Bosin, A.A., Psheneva, O.Y., Ivanova, E.D., 2007. Millennium 	���

scale environment changes of the Okhotsk Sea during last 80 kyr and their phase 	���

relationship with global climate changes. J. Oceanogr. 63, 609-623. 	���

Gorbarenko, S.A., Harada, N., Malakhov, M.I., Vasilenko, Y.P., Bosin, A.A., 	���

Goldberg, E.L., 2010a. Orbital and millennial-scale environmental and 	���

sedimentological changes in the Okhotsk Sea during the last 350 kyr. Global Planet. 	���

Change 72, 79-85. doi:10.1016/j.gloplacha.2010.03.002. 	���

Gorbarenko, S.A., Wang, P., Wang, R., Cheng, X., 2010b. Orbital and suborbital 	���

environmental changes in the southern Bering Sea during the last 50 kyr. 	�	�

Palaeogeogr. Palaeocl. 286, 97-106. doi:10.1016/j.palaeo.2009.12.014. 	�
�

Gorbarenko, S.A., Harada, N., Malakhov, M.I., Velivetskaya, T.A., Vasilenko, Y.P., 	���

Bosin, A.A., Derkachev, A.N., Goldberg, E.L., Ignatiev, A.V., 2012. Responses of the 	���

Okhotsk Sea environment and sedimentology to global climate changes at the orbital 	���

and millennial scale during the last 350 kyr. Deep-Sea Res. Pt. II 61-64, 73-84. 	���

doi:10.1016/j.dsr2.2011.05.016. 	���

Guo, L., Macdonald, R.W., 2006. Source and transport of terrigenous organic matter 	���

in the upper Yukon River: Evidence, from isotopic (δ13C, ∆14C, and δ15N) composition 	���

of dissolved, colloidal, and particulate phases. Global Biogeochem. Cy. 20, GB2011. 	���

doi:10.1029/2005GB002593. 	�	�

Guo, L., Tanaka, T., Wang, D., Tanaka, N., Murata, A., 2004. Distributions, 	�
�

speciation and stable isotope composition of organic matter in the southeastern 	���

Bering Sea. Mar. Chem. 91, 211-226. doi:10.1016/j.marchem.2004.07.002. 	���



Haug, G.H., Sigman, D.M., Tiedemann, R., Pedersen, T.F., Sarnthein, M., 1999. 	���

Onset of permanent stratification in the subarctic Pacific Ocean. Nature 401, 779-	���

782. 	���

Hendy, I.L., Kennett, J.P., 2000. Dansgaard-Oeschger cycles and the California 	���

Current System: Planktonic foraminiferal response to rapid climate change in Santa 	���

Barbara Basin, Ocean Drilling Program hole 893A. Paleoceanography 15 (1), 30-42. 	���

Hendy, I.L., Kennett, J.P., 2003. Tropical forcing of North Pacific intermediate water 	�	�

distribution during Late Quaternary rapid climate change? Quaternary Sci. Rev. 22, 	�
�

673-689. doi:10.1016/S0277-3791(02)00186-5. 	���

Honda, M.C., Imai, K., Nojiri, Y., Hoshi, F., Sugawara, T., Kusakabe, M., 2002. The 	���

biological pump in the northwestern North Pacific based on fluxes and major 	���

components of particulate matter obtained by sediment-trap experiments (1997-	���

2000). Deep-Sea Res. Pt. II 49, 5595-5625. doi:10.1016/S0967-0645(02)00201-1. 	���

Horikawa, K., Asahara, Y., Yamamoto, K., Okazaki, Y., 2010. Intermediate water 	���

formation in the Bering Sea during glacial periods: Evidence from neodymium isotope 	���

ratios. Geology 38 (5), 435-438. doi:10.1130/G30225.1. 	���

Hu, A., Meehl, G.A., Otto-Bliesner, B.L., Waelbroeck, C., Han, W., Loutre, M.-F., 	�	�

Lambeck, K., Mitrovica, J.X., Rosenbloom, N., 2010. Influence of Bering Strait flow 	�
�

and North Atlantic circulation on glacial sea-level changes. Nat. Geosci. 3, 118-121. 	���

doi:10.1038/ngeo0729. 	���

Itaki, T., Uchida, M., Kim, S., Shin, H.-S., Tada, R., Khim, B.-K., 2009. Late 	���

Pleistocene stratigraphy and palaeoceanographic implications in northern Bering Sea 	���

slope sediments: Evidence from the radiolarian species Cycladophora davisiana. J. 	���

Quaternary Sci. 24 (8), 856-865. doi:10.1002/jqs.1356. 	���

Jaccard, S.L., Galbraith, E.D., 2012. Large climate-driven changes of oceanic oxygen 	���

concentrations during the last deglaciation. Nat. Geosci. 5 (2), 151-156. 	���

doi:10.1038ngeo1352. 	�	�

Jaccard, S.L., Galbraith, E.D., 2013. Direct ventilation of the North Pacific did not 	�
�

reach the deep ocean during the last deglaciation. Geophys. Res. Lett. 40, 199-203. 		��

doi:10.1029/2012GL054118. 		��



Jaccard, S.L., Haug, G.H., Sigman, D.M., Pedersen, T.F., Thierstein, H.R., Röhl, U., 		��

2005. Glacial/interglacial changes in subarctic North Pacific stratification. Science 		��

308, 1003-1006. doi:10.1126/science.1108696. 		��

Jaccard, S.L., Galbraith, E.D., Sigman, D.M., Haug, G.H., 2010. A pervasive link 		��

between Antarctic ice core and subarctic Pacific sediment records over the past 800 		��

kyrs. Quaternary Sci. Rev. 29, 206-212. doi:10.1016/j.quascirev.2009.10.007. 		��

Kao, S.J., Liu, K.K., Hsu, S.C., Chang, Y.P., Dai, M.H., 2008. North Pacific-wide 			�

spreading of isotopically heavy nitrogen during the last deglaciation: Evidence from 		
�

the western Pacific. Biogeosciences 5, 1641-1650. doi:10.5194/bg-5-1641-2008. 	
��

Kashiyama, Y., Ogawa, N.O., Shiro, M., Tada, R., Kitazato, H., Ohkouchi, N., 2008. 	
��

Reconstruction of the biogeochemistry and ecology of photoautotrophs based on the 	
��

nitrogen and carbon isotopic compositions of vanadyl porphyrins from Miocene 	
��

siliceous sediments. Biogeosciences 5, 797-816. doi:10.5194/bg-5-797-2008. 	
��

Katsuki, K., Takahashi, K., 2005. Diatoms as paleoenvironmental proxies for 	
��

seasonal productivity, sea-ice and surface circulation in the Bering Sea during the 	
��

late Quaternary. Deep-Sea Res. Pt. II 52, 2110-2130. 	
��

doi:10.1016/j.dsr2.2005.07.001. 	
	�

Keigwin, L.D., Jones, G.A., Froelich, P.N., 1992. A 15,000 year paleoenvironmental 	

�

record from Meiji Seamount, far northwestern Pacific. Earth Planet. Sc. Lett. 111, 
���

425-440. 
���

Keigwin, L.D., Donnelly, J.P., Cook, M.S., Driscoll, N.W., Brigham-Grette, J., 2006. 
���

Rapid sea-level rise and Holocene climate in the Chukchi Sea. Geology 34 (10), 861-
���

864. doi:10.1130/G22712.1. 
���

Khim, B.-K., Sakamoto, T., Harada, N., 2012. Reconstruction of surface water 
���

conditions in the central region of the Okhotsk Sea during the last 180 kyrs. Deep-
���

Sea Res. Pt. II 61-64, 63-72. doi:10.1016/j.dsr2.2011.05.014. 
���

Kienast, S.S., Calvert, S.E., Pedersen, T.F., 2002. Nitrogen isotope and productivity 
�	�

variations along the northeast Pacific margin over the last 120 kyr: Surface and 
�
�

subsurface paleoceanography. Paleoceanography 17 (4), 1055. 
���

doi:10.1029/2001PA000650. 
���



Kienast, S.S., Hendy, I.L., Crusius, J., Pedersen, T.F., Calvert, S.E., 2004. Export 
���

production in the subarctic North Pacific over the last 800 kyrs: No evidence for iron 
���

fertilization? J. Oceanogr. 60 (1), 189-203. 
���

Kim, S., Khim, B.K., Uchida, M., Itaki, T., Tada, R., 2011. Millennial-scale 
���

paleoceanographic events and implication for the intermediate-water ventilation in 
���

the northern slope area of the Bering Sea during the last 71 kyrs. Global Planet. 
���

Change 79, 89-98. doi:10.1016/j.gloplacha.2011.08.004. 
�	�

Kuehn, H., Lembke-Jene, L., Gersonde, R., Esper, O., Lamy, F., Arz, H., Tiedemann, 
�
�

R., 2014. Laminated sediments in the Bering Sea reveal atmospheric teleconnections 
���

to Greenland climate on millennial to decadal timescales during the last 
���

deglaciations. Clim. Past Discuss. 10, 2467-2518. doi:10.5194/cpd-10-2467-2014. 
���

Lam, P.J., Robinson, L.F., Blusztajn, J., Li, C., Cook, M.S., McManus, J.F., Keigwin, 
���

L.D., 2013. Transient stratification as the cause of the North Pacific productivity spike 
���

during deglaciation. Nat. Geosci. 6, 622-626. doi:10.1038/ngeo1873. 
���

Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. 
���

A long-term numerical solution for the insolation quantities of the Earth. Astron. 
���

Astrophys. 428, 261-285. doi:10.1051/0004-6361:20041335. 
�	�

Lehmann, M.F., Sigman, D.M., McCorkle, D.C., Brunelle, B.G., Hoffmann, S., 
�
�

Kienast, M., Cane, G., Clement, J., 2005. Origin of the deep Bering Sea nitrate 
���

deficit: Constraints from the nitrogen and oxygen isotopic composition of water 
���

column nitrate and benthic nitrate fluxes. Global Biogeochem. Cy. 19, GB4005. 
���

doi:10.1029/2005GB002508. 
���

Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally 
���

distributed benthic δ
18O records. Paleoceanography 20, PA1003. 
���

doi:10.1029/2004PA001071. 
���

Liu, K.-K., Kaplan, I.R., 1989. The eastern tropical Pacific as a source of 15N-enriched 
���

nitrate in seawater off southern California. Limnol. Oceanogr. 34 (5), 820-830. 
�	�

Macdonald, A.M., Suga, T., Curry, R.G., 2001. An isopycnally averaged North Pacific 
�
�

climatology. J. Atmos. Ocean. Tech. 18 (3), 394-420. 
���



Mariotti, A., Germon, J.C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., Tardieux, 
���

P., 1981. Experimental determination of nitrogen kinetic isotope fractionation: Some 
���

principles; Illustration for the denitrification and nitrification processes. Plant Soil 62 
���

(3), 413-430. doi:10.1007/BF02374138. 
���

Matsumoto, K., Oba, T., Lynch-Stieglitz, J., Yamamoto, H., 2002. Interior 
���

hydrography and circulation of the glacial Pacific Ocean. Quaternary Sci. Rev. 21, 
���

1693-1704. doi:10.1016/S0277-3791(01)00142-1. 
���

Max, L., Riethdorf, J.-R., Tiedemann, R., Smirnova, M., Lembke-Jene, L., Fahl, K., 
�	�

Nürnberg, D., Matul, A., Mollenhauer, G., 2012. Sea surface temperature variability 
�
�

and sea-ice extent in the subarctic northwest Pacific during the past 15,000 years. 
���

Paleoceanography 27, PA3213. doi:10.1029/2012PA002292. 
���

Max, L., Lembke-Jene, L., Riethdorf, J.-R., Tiedemann, R., Nürnberg, D., Kühn, H., 
���

Mackensen, A., 2014. Pulses of enhanced North Pacific Intermediate Water 
���

ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation. Clim. 
���

Past 10, 591-605. doi:10.5194/cp-10-591-2014. 
���

McQuoid, M.R., Whiticar, M.J., Calvert, S.E., Pedersen, T.F., 2001. A post-glacial 
���

isotope record of primary production and accumulation in the organic sediments of 
���

Saanich Inlet, ODP Leg 169S. Mar. Geol. 174, 273-286. 
�	�

Méheust, M., Fahl, K., Stein, R., 2013. Variability in modern sea surface temperature, 
�
�

sea ice and terrigenous input in the sub-polar North Pacific and Bering Sea: 
���

Reconstruction from biomarker data. Org. Geochem. 57, 54-64. 
���

doi:10.1016/j.orggeochem.2013.01.008i. 
���

Menviel, L., Timmermann, A., Elison Timm, O., Mouchet, A., Abe-Ouchi, A., 
���

Chikamoto, M.O., Harada, N., Ohgaito, R., Okazaki, Y., 2012. Removing the North 
���

Pacific halocline: Effects on global climate, ocean circulation and the carbon cycle. 
���

Deep-Sea Res. Pt. II 61-64, 106-113. doi:10.1016/j.dsr2.2011.03.005. 
���

Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of 
���

sedimentary organic matter. Chem. Geol. 114, 289-302. 
�	�



Müller, P.J., Schneider, R., 1993. An automated leaching method for the 
�
�

determination of opal in sediments and particulate matter. Deep-Sea Res. Pt. I 40 
���

(3), 425-444. 
���

Nagashima, K., Asahara, Y., Takeuchi, F., Harada, N., Toyoda, S., Tada, R., 2012. 
���

Contribution of detrital materials from the Yukon River to the continental shelf 
���

sediments of the Bering Sea based on the electron spin resonance signal intensity 
���

and crystallinity of quartz. Deep-Sea Res. Pt. II 61-64, 145-154. 
���

doi:10.1016/j.dsr2.2011.12.001. 
���

Nakatsuka, T., Watanabe, K., Handa, N., Matsumoto, E., 1995. Glacial to interglacial 
���

surface nutrient variations of Bering deep basins recorded by δ
13C and δ

15N of 
�	�

sedimentary organic matter. Paleoceanography 10 (6), 1047-1061. 
�
�

Narita, H., Sato, M., Tsunogai, S., Murayama, M., Ikehara, M., Nakatsuka, T., 
	��

Wakatsuchi, M., Harada, N., Ujiié, Y., 2002. Biogenic opal indicating less productive 
	��

northwestern North Pacific during the glacial ages. Geophys. Res. Lett. 29 (15), 
	��

1732. doi:10.1029/2001GL014320. 
	��

Needoba, J.A., Waser, N.A., Harrison, P.J., Calvert, S.E., 2003. Nitrogen isotope 
	��

fractionation in 12 species of marine phytoplankton during growth on nitrate. Mar. 
	��

Ecol.-Prog. Ser. 255, 81-91. doi:10.3354/meps255081. 
	��

Niebauer, H.J., Bond, N.A., Yakunin, L.P., Plotnikov, V.V., 1999. An update on the 
	��

climatology and sea ice of the Bering Sea, in: Loughlin, T.R., Ohtani, K. (Eds.), 
		�

Dynamics of the Bering Sea. University of Alaska Sea Grant, Fairbanks, Alaska, pp. 
	
�

29-59. 

��

North Greenland Ice Core Project members, 2004. High-resolution record of Northern 

��

Hemisphere climate extending into the last interglacial period. Nature 431, 147-151. 

��

doi:10.1038/nature02848. 

��

Nürnberg, D., Tiedemann, R., 2004. Environmental change in the Sea of Okhotsk 

��

during the last 1.1 million years. Paleoceanography 19, PA4011. 

��

doi:10.1029/2004PA001023. 

��

Nürnberg, D., Dethleff, D., Tiedemann, R., Kaiser, A., Gorbarenko, S.A., 2011. 

��

Okhotsk Sea ice coverage and Kamchatka glaciation over the last 350 ka - Evidence 

	�



from ice-rafted debris and planktonic δ
18O. Palaeogeogr. Palaeocl. 310, 191-205. 


�

doi:10.1016/j.palaeo.2011.07.011. �����

Ohkushi, K., Itaki, T., Nemoto, N., 2003. Last Glacial-Holocene change in �����

intermediate-water ventilation in the Northwestern Pacific. Quaternary Sci. Rev. 22, �����

1477-1484. doi:10.1016/S0277-3791(03)00082-9. �����

Okazaki, Y., Takahashi, K., Asahi, H., Katsuki, K., Hori, J., Yasuda, H., Sagawa, Y., �����

Tokuyama, H., 2005a. Productivity changes in the Bering Sea during the late �����

Quaternary. Deep-Sea Res. Pt. II 52, 2150-2162. doi:10.1016/j.dsr2.2005.07.003. �����

Okazaki, Y., Takahashi, K., Katsuki, K., Ono, A., Hori, J., Sakamoto, T., Uchida, M., �����

Shibata, Y., Ikehara, M., Aoki, K., 2005b. Late Quaternary paleoceanographic ���	�

changes in the southwestern Okhotsk Sea: Evidence from geochemical, radiolarian, ���
�

and diatom records. Deep-Sea Res. Pt. II 52, 2332-2350. �����

doi:10.1016/j.dsr2.2005.07.007. �����

Okazaki, Y., Timmermann, A., Menviel, L., Harada, N., Abe-Ouchi, A., Chikamoto, �����

M.O., Mouchet, A., Asahi, H., 2010. Deepwater formation in the North Pacific during �����

the last glacial termination. Science 329, 200-204. doi:10.1126/science.1190612. �����

Okazaki, Y., Sagawa, T., Asahi, H., Horikawa, K., Onodera, J., 2012. Ventilation �����

changes in the western North Pacific since the last glacial period. Clim. Past 8, 17-�����

24. doi:10.5194/cp-8-17-2012. �����

Ortiz, J.D., O'Connell, S.B., DelViscio, J., Dean, W., Carriquiry, J.D., Marchitto, T., ���	�

Zheng, Y., van Geen, A., 2004. Enhanced marine productivity off western North ���
�

America during warm climate intervals of the past 52 k.y.. Geology 32 (6), 521-524. �����

doi:10.1130/G20234.1. �����

Ovsepyan, E.A., Ivanova, E.V., Max, L., Riethdorf, J.-R., Nürnberg, D., Tiedemann, �����

R., 2013. Late Quaternary oceanographic conditions in the western Bering Sea. �����

Oceanology 53 (2), 211-222. doi:10.1134/S0001437013020136. �����

Pennock, J.R., Velinsky, D.J., Ludlam, J.M., Sharp, J.H., Fogel, M.L., 1996. Isotopic �����

fractionation of ammonium and nitrate during uptake by Skeletonema costatum: �����

Implications for δ
15N dynamics under bloom conditions. Limnol. Oceanogr. 41 (3), �����

451-459. ���	�



Perdue, E.M., Koprivnjak, J.-F., 2007. Using the C/N ratio to estimate terrigenous ���
�

inputs of organic matter to aquatic environments. Estuar. Coast. Shelf S. 73, 65-72. �����

doi:10.1016/j.ecss.2006.12.021. �����

Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., �����

Clausen, H.B., Siggaard-Andersen, M.-L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, �����

D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.E., Ruth, �����

U., 2006. A new Greenland ice core chronology for the last glacial termination. J. �����

Geophys. Res. 111, D06102. doi:10.1029/2005JD006079. �����

Rella, S.F., Tada, R., Nagashima, K., Ikehara, M., Itaki, T., Ohkushi, K., Sakamoto, �����

T., Harada, N., Uchida, M., 2012. Abrupt changes of intermediate water properties on ���	�

the northeastern slope of the Bering Sea during the last glacial and deglacial period. ���
�

Paleoceanography 27, PA3203. doi:10.1029/2011PA002205. �����

Riethdorf, J.-R., Nürnberg, D., Max, L., Tiedemann, R., Gorbarenko, S.A., Malakhov, �����

M.I., 2013a. Millennial-scale variability of marine productivity of marine productivity �����

and terrigenous matter supply in the western Bering Sea over the past 180 kyr. Clim. �����

Past 9, 1345-1373. doi:10.5194/cp-9-1345-2013. �����

Riethdorf, J.-R., Max, L., Nürnberg, D., Lembke-Jene, L., Tiedemann, R., 2013b. �����

Deglacial development of (sub) sea surface temperature and salinity in the subarctic �����

northwest Pacific: Implications for upper-ocean stratification. Paleoceanography 28, �����

91-104. doi:10.1002/palo.20014. ���	�

Robinson, R.S., Kienast, M., Albuquerque, A.L., Altabet, M., Contreras, S., De Pol ���
�

Holz, R., Dubois, N., Francois, R., Galbraith, E., Hsu, T.-C., Ivanochko, T., Jaccard, �����

S., Kao, S.-J., Kiefer, T., Kienast, S., Lehmann, M.F., Martinez, P., McCarthy, M., �����

Möbius, J., Pedersen, T., Quan, T.M., Ryabenko, E., Schmittner, A., Schneider, R., �����

Schneider-Mor, A., Shigemitsu, M., Sinclair, D., Somes, C., Studer, A., Thunell, R., �����

Yang, J.-Y., 2012. A review of nitrogen isotopic alteration in marine sediments. �����

Paleoceanography 27, PA4203. doi:10.1029/2012PA002321. �����

Roden, G.I., 1995. Aleutian Basin of the Bering Sea: Thermohaline, oxygen, nutrient, �����

and current structure in July 1993. J. Geophys. Res. 100 (C7), 13539-13554. �����

doi:10.1029/95JC01291. ���	�



Roden, G.I., 2000. Flow and water property structures between the Bering Sea and ���
�

Fiji in the summer of 1993. J. Geophys. Res. 105 (C12), 28595-28612. �����

doi:10.1029/1999JC000030. �����

Sancetta, C., 1983. Effect of Pleistocene glaciation upon oceanographic �����

characteristics of the North Pacific Ocean and Bering Sea. Deep-Sea Res 30 (8A), �����

851-869. �����

Sarnthein, M., Stattegger, K., Dreger, D., Erlenkeuser, H., Grootes, P., Haupt, B.J., �����

Jung, S., Kiefer, T., Kuhnt, W., Pflaumann, U., Schäfer-Neth, C., Schulz, H., Schulz, �����

M., Seidov, D., Simstich, J., van Kreveld, S., Vogelsang, E., Völker, A., Weinelt, M., �����

2001. Fundamental modes and abrupt changes in North Atlantic circulation and ���	�

climate over the last 60 ky - Concepts, reconstruction and numerical modeling, in: ���
�

Schäfer, P., Ritzrau, W., Schlüter, M., Thiede, J. (Eds.),The Northern North Atlantic: �����

A Changing Environment, Springer, Berlin, pp. 365-410. �����

Schlitzer, R., 2013. Ocean Data View, http://odv.awi.de (last access: 4 February �����

2013). �����

Schlung, S.A., Ravelo, A.C., Aiello, I.W., Andreasen, D.H., Cook, M.S., Drake, M., �����

Dyez, K.A., Guilderson, T.P., LaRiviere, J., Stroynowski, Z., Takahashi, K., 2013. �����

Millennial-scale climate change and intermediate water circulation in the Bering Sea �����

from 90 ka: A high-resolution record from IODP Site U1340. Paleoceanography 28, �����

1-14. doi:10.1029/2012PA002365. ���	�

Seki, O., Ikehara, M., Kawamura, K., Nakatsuka, T., Ohnishi, K., Wakatsuchi, M., ���
�

Narita, H., Sakamoto, T., 2004. Reconstruction of paleoproductivity in the Sea of ��	��

Okhotsk over the last 30 kyr. Paleoceanography 19, PA1016. ��	��

doi:10.1029/2002PA000808. ��	��

Shigemitsu, M., Narita, H., Watanabe, Y.W., Harada, N., Tsunogai, S., 2007. Ba, Si, ��	��

U, Al, Sc, La, Th, C and 13C/12C in a sediment core in the western subarctic Pacific ��	��

as proxies of past biological production. Mar. Chem. 106, 442-455. ��	��

doi:10.1016/j.marchem.2007.04.004. ��	��



Shigemitsu, M., Watanabe, Y.W., Narita, H., 2008. Time variations of δ15N of organic ��	��

nitrogen in deep western subarctic Pacific sediment over the last 145 ka. Geochem. ��		�

Geophy. Geosy. 9 (10), Q10012. doi:10.1029/2008GC001999. ��	
�

Sigman, D.M., Altabet, M.A., McCorkle, D.C., Francois, R., Fischer, G., 1999. The ��
��

δ
15N of nitrate in the Southern Ocean: Consumption of nitrate in surface waters. ��
��

Global Biogeochem. Cy. 13 (4), 1149-1166. doi:10.1029/1999GB900038. ��
��

Sigman, D.M., Altabet, M.A., McCorkle, D.C., Francois, R., Fischer, G., 2000. The ��
��

δ
15N of nitrate in the Southern Ocean: Nitrogen cycling and circulation in the ocean ��
��

interior. J. Geophys. Res. 105 (C8), 19599-19614. ��
��

Sigman, D.M., Lehman, S.J., Oppo, D.W., 2003. Evaluating mechanisms of nutrient ��
��

depletion and 13C enrichment in the intermediate-depth Atlantic during the last ice ��
��

age. Paleoceanography 18 (3), 1072. doi:10.1029/2002PA000818. ��
	�

Sigman, D.M., Hain, M.P., Haug, G.H., 2010. The polar ocean and glacial cycles in ��

�

atmospheric CO2 concentration. Nature 466, 47-55. doi:10.1038/nature09149. �����

Smith, S.L., Henrichs, S.M., Rho, T., 2002. Stable C and N isotopic composition of �����

sinking particles and zooplankton over the southeastern Bering Sea shelf. Deep-Sea �����

Res. Pt. II 49, 6031-6050. doi:10.1016/S0967-0645(02)00332-6. �����

Somes, C.J., Schmittner, A., Galbraith, E.D., Lehmann, M.F., Altabet, M.A., Montoya, �����

J.P., Letelier, R.M., Mix, A.C., Bourbonnais, A., Eby, M., 2010. Simulating the global �����

distribution of nitrogen isotopes in the ocean. Global Biogeochem. Cy. 24, GB4019. �����

doi:10.1029/2009GB003767. �����

Springer, A.M., McRoy, C.P., Flint, M.V., 1996. The Bering Sea Green Belt: Shelf-���	�

edge processes and ecosystem production. Fish. Oceanogr. 5, 205-223. ���
�

Stabeno, P.J., Schumacher, J.D., Ohtani, K., 1999. The physical oceanography of �����

the Bering Sea, in: Loughlin, T.R., Ohtani, K. (Eds.), Dynamics of the Bering Sea. �����

University of Alaska Sea Grant, Fairbanks, Alaska, pp. 1-28. �����

Takahashi, K., Fujitani, N., Yanada, M., 2002a. Long term monitoring of particle �����

fluxes in the Bering Sea and the central subarctic Pacific Ocean, 1990-2000. Progr. �����

Oceanogr. 55, 95-112. doi:10.1016/S0079-6611(02)00072-1. �����



Takahashi, T., Sutherland, S.C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., �����

Bates, N., Wanninkhof, R., Feely, R.A., Sabine, C., Olafsson, J., Nojiri, Y., 2002b. �����

Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal ���	�

biological and temperature effects. Deep-Sea Res.. Pt. II 49, 1601-1622. ���
�

doi:10.1016/S0967-0645(02)00003-6. �����

Tanaka, S., Takahashi, K., 2005. Late Quaternary paleoceanographic changes in the �����

Bering Sea and the western subarctic Pacific based on radiolarian assemblages. �����

Deep-Sea Res. Pt. II 52, 2131-2149. doi:10.1016/j.dsr2.2005.07.002. �����

Ternois, Y., Kawamura, K., Keigwin, L., Ohkouchi, N., Nakatsuka, T., 2001. A �����

biomarker approach for assessing marine and terrigenous inputs to the sediments of �����

Sea of Okhotsk for the last 27,000 years. Geochim. Cosmochim. Ac. 65 (5), 791-802. �����

Thunell, R.C., Sigman, D.M., Muller-Karger, F., Astor, Y., Varela, R., 2004. Nitrogen �����

isotope dynamics of the Cariaco Basin, Venezuela. Global Biogeochem. Cy. 18, ���	�

GB3001. doi:10.1029/2003GB002185. ���
�

Tomczak, M., Godfrey, J.S., 1994. Regional oceanography: An introduction. Elsevier �����

Science Ltd., Oxford, 391 pp. �����

Tsuda, A., Takeda, S., Saito, H., Nishioka, J., Nojiri, Y., Kudo, I., Kiyosawa, H., �����

Shiomoto, A., Imai, K., Ono, T., Shimamoto, A., Tsumune, D., Yoshimura, T., Aono, �����

T., Hinuma, A., Kinugasa, M., Suzuki, K., Sohrin, Y., Noiri, Y., Tani, H., Deguchi, Y., �����

Tsurushima, N., Ogawa, H., Fukami, K., Kuma, K., Saino, T., 2003. A mesoscale iron �����

enrichment in the western subarctic Pacific induces a large centric diatom bloom. �����

Science 300, 958-961. doi:10.1126/science.1082000. �����

Tyrrell, T., Merico, A., Waniek, J.J., Wong, C.S., Metzl, N., Whitney, F., 2005. Effect ���	�

of seafloor depth on phytoplankton blooms in high-nitrate, low-chlorophyll (HNLC) ���
�

regions. J. Geophys. Res. 110, G02007. doi:10.1029/2005JG000041. �����

van Geen, A., Zheng, Y., Bernhard, J.M., Cannariato, K.G., Carriquiry, J., Dean, �����

W.E., Eakins, B.W., Ortiz, J.D., Pike, J., 2003. On the preservation of laminated �����

sediments along the western margin of North America. Paleoceanography 18 (4), �����

1098. doi:10.1029/2003PA000911. �����



VanLaningham, S., Pisias, N.G., Duncan, R.A., Clift, P.D., 2009. Glacial-interglacial �����

sediment transport to the Meiji Drift, northwest Pacific Ocean: Evidence for timing of �����

Beringian outwashing. Earth Planet. Sc. Lett. 277, 64-72. �����

doi:10.1016/j.epsl.2008.09.033. ���	�

Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, ���
�

K., Balbon, E., Labracherie, M., 2002. Sea-level and deep water temperature �����

changes derived from benthic foraminifera isotopic records. Quaternary Sci. Rev. 21, �����

295-305. doi:10.1016/S0277-3791(01)00101-9. �����

Walinsky, S.E., Prahl, F.G., Mix, A.C., Finney, B.P., Jaeger, J.M., Rosen, G.P., 2009. �����

Distribution and composition of organic matter in surface sediments of coastal �����

Southeast Alaska. Cont. Shelf Res. 29, 1565-1579. doi:10.1016/j.csr.2009.04.006. �����

Walsh, E.M., Ingalls, A.E., Keil, R.G., 2008. Sources and transport of terrestrial �����

organic matter in Vancouver Island fjords and the Vancouver-Washington Margin: A �����

multiproxy approach using δ
13Corg, lignin phenols, and the ether lipid BIT index. ���	�

Limnol. Oceanogr. 53 (3), 1054-1063. doi:10.4319/lo.2008.53.3.1054. ���
�

Wang, Y., Cheng, H., Edwards, R.L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., �����

Wang, X., An, Z., 2008. Millennial- and orbital-scale changes in the East Asian �����

monsoon over the past 224,000 years. Nature 451, 1090-1093. �����

doi:10.1038/nature06692. �����

Warren, B.A., 1983. Why is no deep water formed in the North Pacific? J. Mar. Res. �����

41, 327-347. �����

Waser, N.A.D., Harrison, P.J., Nielsen, B., Calvert, S.E., Turpin, D.H., 1998. Nitrogen �����

isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, �����

and urea by a marine diatom. Limnol. Oceanogr. 43 (2), 215-224. ���	�

Yamamoto, M., Tanaka, N., Tsunogai, S., 2001. Okhotsk Sea intermediate water ���
�

formation deduced from oxygen isotope systematics. J. Geophys. Res. 106 (C12), �����

31075-31084. �����

Yasuda, I., 1997. The origin of the North Pacific Intermediate Water. J. Geophys. �����

Res. 102 (C1), 893-909. �����



Yokoyama, Y., Esat, T.M., 2011. Global climate and sea level: Enduring variability �����

and rapid fluctuations over the past 150,000 years. Oceanography 24 (2), 54-69. �����

doi:10.5670/oceanog.2011.27. �����

Zhang, J., Woodgate, R., Moritz, R., 2010. Sea ice response to atmospheric and �����

oceanic forcing in the Bering Sea. J. Phys. Oceanogr. 40 (8), 1729-1747. ���	�

doi:10.1175/2010JPO4323.1. ���
�

Zheng, Y., van Geen, A., Anderson, R.F., Gardner, J.V., Dean, W.E., 2000. ��	��

Intensification of the northeast Pacific oxygen minimum zone during the Bölling-��	��

Alleröd warm period. Paleoceanography 15 (5), 528-536. ��	��

Ziegler, M., Jilbert, T., de Lange, G.J., Lourens, L.J., and Reichart, G.-J. (2008), ��	��

Bromine counts from XRF scanning as an estimate of the marine organic carbon ��	��

content of sediment cores, Geochemistry Geophysics Geosystems, 9(5), Q05009, ��	��

doi:10.1029/2007GC001932. ��	��

 ��	��

Figure captions ��		�

Figure 1: (a) Surface circulation pattern (red arrows; after Tomczak and Godfrey, ��	
�

1994; Stabeno et al., 1999) and bathymetry of the subarctic North Pacific realm. The ��
��

red dot marks the location of sediment core SO201-2-85KL studied here. Published ��
��

reference records are marked by yellow dots. Bering Sea: MR06-04-PC24A (Kim et ��
��

al., 2011), KH99-3-BOW-8A (Horikawa et al., 2010), HLY02-02-17JPC (Brunelle et ��
��

al., 2007, 2010), IODP Site U1340 (Schlung et al., 2013). Okhotsk Sea: YK0712-��
��

GC9A (Khim et al., 2012), GGC27 (Brunelle et al., 2010). NW Pacific: MD01-2416 ��
��

(Galbraith et al., 2008a), PC13 (Brunelle et al., 2010). NE Pacific: ODP Site 887 ��
��

(Galbraith et al., 2008a). The modern average maximum sea-ice extent during March ��
��

is indicated by the dashed black line (after Niebauer et al., 1999; Zhang et al., 2010; ��
	�

IRI/LDEO Climate Data Library, http://iridl.ldeo.columbia.edu/). Surface currents: ��

�

ANSC = Aleutian North Slope Current, BSC = Bering Slope Current, EKC = East �����

Kamchatka Current, ESC = East Sakhalin Current, NOC = North Okhotsk Current, �����

SC = Soya Current, WKC = West Kamchatka Current. Straits: bus = Bussol Strait, �����

kss = Kruzenshtern Strait, ks = Kamchatka Strait, ns = Near Strait, bp = Buldir Pass, �����

as = Amchitka Strait, ap = Amukta Pass, up = Unimak Pass, bs = Bering Strait. (b) �����



Surface nitrate concentration during modern summer (July-September; in µmol l-1) �����

from World Ocean Atlas 2009 data (Garcia et al., 2010). Maps produced with "Ocean �����

Data View" (Schlitzer, 2013). �����

 ���	�

Figure 2: (a) Relationship between concentrations of total nitrogen (TN) and total ���
�

organic carbon (TOC) in samples from core SO201-2-85KL. For the calculation of �����

molar N/C ratios a linear regression between TOC and TN was used to assess the �����

fraction of inorganic nitrogen, represented by the intercept of the regression line at �����

TOC = 0. (b) Comparison with δ
15Nbulk indicates that there is only a weak linear �����

relationship between the isotopic signal and TN concentrations (R2 = 0.24; p < 10-4). �����

 �����

Figure 3: Linear sedimentation rate (LSR) vs. bulk accumulation rate (AR Bulk), and �����

comparison of concentration and accumulation rate (AR) records of Siliciclastics, �����

CaCO3, TOC and opal for core SO201-2-85KL. ���	�

 ���
�

Figure 4: Records reflecting changes in export production and terrigenous matter �����

supply in core SO201-2-85KL over the past 180 kyr in comparison with Northern �����

Hemisphere summer (July-September) insolation at 65°N (after Laskar et al., 2004). �����

Logging data (underlying grey lines), %Siliciclastics, as well as CaCO3 and opal �����

concentrations are from Max et al. (2012) and Riethdorf et al. (2013a, 2013b). Note �����

inverted axes of %Siliciclastics and XRF Al count rates. The δ
18O records from the �����

NGRIP ice core in Greenland (NGRIP members, 2004; GICC05 timescale, �����

Rasmussen et al., 2006) and from the Sanbao stalagmites in China (Wang et al., �����

2008) are shown for reference. Greenland interstadials (GI) are highlighted by pale ���	�

red vertical bars. Boundaries of Marine Isotope Stages (MIS) after Lisiecki and ���
�

Raymo (2005). �����

 �����

Figure 5: Comparison of δ
13Cbulk with (a) molar N/C ratios and (b) δ

15Nbulk for core �����

SO201-2-85KL. Samples from warm intervals (MIS 5.5, 5.3, 5.1, 3, and 1) are �����

marked by red dots, while blue dots mark those from cold intervals (MIS 6, 5.4, 5.2, �����



4, 2), and green triangles indicate Holocene (<11.7 ka BP) samples. Grey-shaded �����

boxes represent geochemical provenances (after literature data; see text for �����

references). The dashed lines indicate the applied linear mixing model for the �����

estimation of mterr. Marine phytoplankton and vascular plant detritus (VPD) are ���	�

considered as potential marine and terrestrial organic matter sources (endmembers). ���
�

 �����

Figure 6: Proxy records from core SO201-2-85KL in comparison with published �����

reference records covering the last 180 kyr: (a) Northern Hemisphere summer (65°; �����

July-September) insolation after Laskar et al. (2004), (b) sedimentary δ
13C and (c) �����

molar N/C ratios used to estimate the fraction of terrestrial organic matter (mterr; �����

respective axes apply to those of δ
13C and N/C), (d) color b* assumed to reflect �����

export production, (e) δ
15Nbulk reflecting surface nitrate utilization, (f) neodymium �����

isotope ratios from core KH99-3-BOW-8A (Horikawa et al., 2010; cf. Figure 1) �����

considered to approximate intermediate water formation, and (g) relative sea-level ���	�

(Waelbroeck et al., 2002) normalized to the sill depth (~50 m; dashed line) of the ���
�

Bering Strait (∆RSL). MIS boundaries after Lisiecki and Raymo (2005), GI highlighted �����

by pale red vertical bars. �����

 �����

Figure 7: Comparison of δ
15Nbulk from SO201-2-85KL (black line) with other �����

sedimentary (solid lines) and diatom-bound (dotted lines) δ
15N records from the �����

subarctic North Pacific and its marginal seas (cf. Figure 1). The timing of Greenland �����

interstadials and MIS boundaries are indicated. �����
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Table 1 Ranges, averages, and variability of δ
13

C, molar N/C ratio, and mterr in Core SO201-2-85KL. 

Variable Minimum Maximum Average StDev. 

δ
13

C (‰ VPDB) −25.4 −21.9 −23.2 0.6 

molar N/C ratio 0.04 0.11 0.08 0.01 

mterr via δ
13

C 18% 88% 45% 11% 

mterr via N/C 12% 86% 42% 8% 

 

Table 2 Parameters for Calculation of mterr Using Eq. (1). 

Variable Minimum Maximum Average 

Marine Endmember Composition 

d
13

Cmar −20 ‰ −22 ‰ −21‰ 

d
15

Nmar 5.0 ‰ / 6.5 ‰ 

N/Cmar 0.100 0.150 0.125  

Terrestrial Endmember Composition 

d
13

Cterr −25 ‰ −27 ‰ −26 ‰ 

d
15

Nterr 0 ‰ 1.0 ‰ 0.5 ‰ 

N/Cterr 0 0.050 0.025 

 




