904 research outputs found

    HD 97394: a magnetic Ap star with high cerium overabundance

    Get PDF
    We report a spectroscopic analysis of the chemically peculiar Ap star HD 97394. The stellar spectrum is rich in lines of rare earth elements with large overabundances, especially cerium, gadolinium and europium. Enhancement of the abundances of these rare earths shows this star to be one of the most peculiar stars. Very large overabundances were found for lines of Ce iii and Eu iii. Abundances obtained from second ionization lines of Nd, Ce and Eu are about 2 dex higher than for those of the first ionization. From partially split Zeeman components of the Fe ii 6149.258 Å line and from synthetic modelling, a global magnetic field of 3.1 kG was measured. We tested for pulsation of the star with high time resolution spectroscopy obtained with the ESO Very Large Telescope. We place an upper limit to any pulsation amplitude of 30–40 m s−1 for individual lines of rare earth elements, of 10–20 m s−1 for the combination of several lines, and of 6–10 m s−1 for cross-correlation over large spectral bands

    The Properties of Water in the Pressure-Temperature Landscape

    Get PDF
    Water represents the major component of most food systems. During thermal or high-pressure processing, physical and chemical properties of water are changed. The p-T diagram represents an obvious presentation of isoproperty lines and their pressure and temperature dependencies. In this work, 15 different properties of pure water are shown as isoproperty lines in the pressure-temperature landscape. By using functional relationships from the "International Association for the Properties of Water and Steam” and databases from the "National Institute of Standards and Technology,” highest accuracy is guaranteed. Applying the generated graphs, a compact overview is given and a wide range of thermal and high-pressure processes can easily be compared. The different pressure and temperature dependencies of all properties showed the complexity of medium conditions during thermal and high-pressure processing. An extended understanding of pressure-temperature dependencies will improve process concepts as well as industrial applications at high temperature and high isostatic pressur

    Magnetic stars from a FEROS cool Ap star survey

    Get PDF
    New magnetic Ap stars with split Zeeman components are presented. These stars were discovered from observations with the Fibre-fed Extended Range Optical Spectrograph (FEROS) spectrograph at the European Southern Observatory (ESO) 2.2-m telescope. 15 new magnetic stars are analysed here. Several stars with very strong magnetic fields were found, including HD 70702 with a 15-kG magnetic field strength, and HD 168767 with a 16.5-kG magnetic field strength measured using split Zeeman components of spectral lines and by comparison with synthetic calculations. The physical parameters of the stars were estimated from photometric and spectroscopic data. Together with previously published results for stars with strong magnetic fields, the relationship between magnetic field strength and rotation period is discussed

    Critical evaluation of magnetic field detections reported for pulsating B-type stars in the light of ESPaDOnS, Narval and reanalyzed FORS1/2 observations

    Full text link
    Recent spectropolarimetric studies of 7 SPB and ÎČ\beta Cep stars have suggested that photospheric magnetic fields are more common in B-type pulsators than in the general population of B stars, suggesting a significant connection between magnetic and pulsational phenomena. We present an analysis of new and previously published spectropolarimetric observations of these stars. New Stokes VV observations obtained with the high-resolution ESPaDOnS and Narval instruments confirm the presence of a magnetic field in one of the stars (Ï”\epsilon Lup), but find no evidence of magnetism in 5 others. A re-analysis of the published longitudinal field measurements obtained with the low-resolution FORS1/2 spectropolarimeters finds that the measurements of all stars show more scatter from zero than can be attributed to Gaussian noise, suggesting the presence of a signal and/or systematic under-estimation of error bars. Re-reduction and re-measurement of the FORS1/2 spectra from the ESO archive demonstrates that small changes in reduction procedure lead to substantial changes in the inferred longitudinal field, and substantially reduces the number of field detections at the 3σ\sigma level. Furthermore, we find that the published periods are not unique solutions to the time series of either the original or the revised FORS1/2 data. We conclude that the reported field detections, proposed periods and field geometry models for α\alpha Pyx, 15 CMa, 33 Eri and V1449 Aql are artefacts of the data analysis and reduction procedures, and that magnetic fields at the reported strength are no more common in SPB/ÎČ\beta Cep stars than in the general population of B stars.Comment: 10 pages, 5 figures, accepted for publication in ApJ, 2012, typo correcte

    A rival for Babcock's star: the extreme 30-kG variable magnetic field in the Ap star HD 75049

    Get PDF
    The extraordinary magnetic Ap star HD 75049 has been studied with data obtained with the European Southern Observatory Very Large Telescope and 2.2-m telescopes. Direct measurements reveal that the magnetic field modulus at maximum reaches 30 kG. The star shows photometric, spectral and magnetic variability with a rotation period of 4.049 d. Variations of the mean longitudinal magnetic field can be described to first order by a centred dipole model with an inclination i= 25°, an obliquity ÎČ= 60° and a polar field Bp= 42 kG. The combination of the longitudinal and surface magnetic field measurements implies a radius of R= 1.7 R⊙, suggesting that the star is close to the zero-age main sequence. HD 75049 displays moderate overabundances of Si, Ti, Cr, Fe and large overabundances of rare earth elements. This star has the second strongest magnetic field of any main-sequence star after Babcock's star, HD 215441, which it rivals

    Time resolved spectroscopy of the cool Ap star HD 213637

    Get PDF
    We present an analysis of high time resolution spectra of the chemically peculiar Ap star HD 213637. The star shows rapid radial velocity variations with a period close to the photometric pulsation period. Radial velocity pulsation amplitudes vary significantly for different rare earth elements. The highest pulsation amplitudes belong to lines of Tb III (∌360 m s−1), Pr II (∌250 m s−1) and Pr III (∌230 m s−1).We did not detect any pulsations from spectral lines of Eu II and in Hα, in contrast to many other roAp stars. We also did not find radial velocity pulsations using spectral lines of other chemical elements, including Mg, Si, Ca, Sc, Cr, Fe, Ni, Y and Ba. There are phase shifts between the maxima of pulsation amplitudes of different rare earth elements and ions, which is evidence of an outwardly running magneto-acoustic wave propagating through the upper stellar atmosphere

    Constraining the fundamental parameters of the O-type binary CPD-41degr7733

    Get PDF
    Using a set of high-resolution spectra, we studied the physical and orbital properties of the O-type binary CPD-41 7733, located in the core of \ngc. We report the unambiguous detection of the secondary spectral signature and we derive the first SB2 orbital solution of the system. The period is 5.6815 +/- 0.0015 d and the orbit has no significant eccentricity. CPD-41 7733 probably consists of stars of spectral types O8.5 and B3. As for other objects in the cluster, we observe discrepant luminosity classifications while using spectroscopic or brightness criteria. Still, the present analysis suggests that both components display physical parameters close to those of typical O8.5 and B3 dwarfs. We also analyze the X-ray light curves and spectra obtained during six 30 ks XMM-Newton pointings spread over the 5.7 d period. We find no significant variability between the different pointings, nor within the individual observations. The CPD-41 7733 X-ray spectrum is well reproduced by a three-temperature thermal mekal model with temperatures of 0.3, 0.8 and 2.4 keV. No X-ray overluminosity, resulting e.g. from a possible wind interaction, is observed. The emission of CPD-41 7733 is thus very representative of typical O-type star X-ray emission.Comment: Accepted by ApJ, 15 pages, 9 figure

    On the effective temperature scale of O stars

    Full text link
    We rediscuss the temperature of O dwarfs based on new non-LTE line blanketed atmosphere models including stellar winds computed with the CMFGEN code of Hillier & Miller (1998). Compared to the latest calibration of Vacca et al. (1996), the inclusion of line blanketing leads to lower effective temperatures, typically by 4000 to 1500 K for O3 to O9.5 dwarf stars. The dependence of the Teff-scale on stellar and model parameters - such as mass loss, microturbulence, and metallicity - is explored, and model predictions are compared to optical observations of O stars. Even for an SMC metallicity we find a non-negligible effect of line blanketing on the Teff-scale. The temperature reduction implies downward revisions of luminosities by 0.1 dex and Lyman continuum fluxes Q0 by approximately 40% for dwarfs of a given spectral type.Comment: 6 pages, 4 figures. To be published in A&

    The variation of the magnetic field of the Ap star HD~50169 over its 29 year rotation period

    Full text link
    Context. The Ap stars that rotate extremely slowly, with periods of decades to centuries, represent one of the keys to the understanding of the processes leading to the differentiation of stellar rotation. Aims. We characterise the variations of the magnetic field of the Ap star HD 50169 and derive constraints about its structure. Methods. We combine published measurements of the mean longitudinal field of HD 50169 with new determinations of this field moment from circular spectropolarimetry obtained at the 6-m telescope BTA of the Special Astrophysical Observatory of the Russian Academy of Sciences. For the mean magnetic field modulus , literature data are complemented by the analysis of ESO spectra, both newly acquired and from the archive. Radial velocities are also obtained from these spectra. Results. We present the first determination of the rotation period of HD 50169, Prot = (29.04+/-0.82) y. HD 50169 is currently the longest-period Ap star for which magnetic field measurements have been obtained over more than a full cycle. The variation curves of both and have a significant degree of anharmonicity, and there is a definite phase shift between their respective extrema. We confirm that HD 50169 is a wide spectroscopic binary, refine its orbital elements, and suggest that the secondary is probably a dwarf star of spectral type M. Conclusions. The shapes and mutual phase shifts of the derived magnetic variation curves unquestionably indicate that the magnetic field of HD 50169 is not symmetric about an axis passing through its centre. Overall, HD 50169 appears similar to the bulk of the long-period Ap stars.Comment: 10 pages, 3 figures, accepted for publication in A&
    • 

    corecore