1,811 research outputs found
Experimental Investigation of the Nature of the Knee in the Primary Cosmic Ray Energy Spectrum with the GAMMA experiment
We present preliminary results obtained by a novel difference method for the
study of the nature of the knee in the energy spectrum of the primary cosmic
radiation. We have applied this method to data from the GAMMA experiment in
Armenia. The analysis provides evidence for the possible existence of a nearby
source of primary cosmic rays in the Southern hemisphere.Comment: 17 pages, 5 figure
Tkachenko modes as sources of quasiperiodic pulsar spin variations
We study the long wavelength shear modes (Tkachenko waves) of triangular
lattices of singly quantized vortices in neutron star interiors taking into
account the mutual friction between the superfluid and the normal fluid and the
shear viscosity of the normal fluid. The set of Tkachenko modes that propagate
in the plane orthogonal to the spin vector are weakly damped if the coupling
between the superfluid and normal fluid is small. In strong coupling, their
oscillation frequencies are lower and are undamped for small and moderate shear
viscosities. The periods of these modes are consistent with the observed
~100-1000 day variations in spin of PSR 1828-11.Comment: 7 pages, 3 figures, uses RevTex, v2: added discussion/references,
matches published versio
Should we doubt the cosmological constant?
While Bayesian model selection is a useful tool to discriminate between
competing cosmological models, it only gives a relative rather than an absolute
measure of how good a model is. Bayesian doubt introduces an unknown benchmark
model against which the known models are compared, thereby obtaining an
absolute measure of model performance in a Bayesian framework. We apply this
new methodology to the problem of the dark energy equation of state, comparing
an absolute upper bound on the Bayesian evidence for a presently unknown dark
energy model against a collection of known models including a flat LambdaCDM
scenario. We find a strong absolute upper bound to the Bayes factor B between
the unknown model and LambdaCDM, giving B < 3. The posterior probability for
doubt is found to be less than 6% (with a 1% prior doubt) while the probability
for LambdaCDM rises from an initial 25% to just over 50% in light of the data.
We conclude that LambdaCDM remains a sufficient phenomenological description of
currently available observations and that there is little statistical room for
model improvement.Comment: 10 pages, 2 figure
A measure on the set of compact Friedmann-Lemaitre-Robertson-Walker models
Compact, flat Friedmann-Lemaitre-Robertson-Walker (FLRW) models have recently
regained interest as a good fit to the observed cosmic microwave background
temperature fluctuations. However, it is generally thought that a globally,
exactly-flat FLRW model is theoretically improbable. Here, in order to obtain a
probability space on the set F of compact, comoving, 3-spatial sections of FLRW
models, a physically motivated hypothesis is proposed, using the density
parameter Omega as a derived rather than fundamental parameter. We assume that
the processes that select the 3-manifold also select a global mass-energy and a
Hubble parameter. The inferred range in Omega consists of a single real value
for any 3-manifold. Thus, the obvious measure over F is the discrete measure.
Hence, if the global mass-energy and Hubble parameter are a function of
3-manifold choice among compact FLRW models, then probability spaces
parametrised by Omega do not, in general, give a zero probability of a flat
model. Alternatively, parametrisation by the injectivity radius r_inj ("size")
suggests the Lebesgue measure. In this case, the probability space over the
injectivity radius implies that flat models occur almost surely (a.s.), in the
sense of probability theory, and non-flat models a.s. do not occur.Comment: 19 pages, 4 figures; v2: minor language improvements; v3:
generalisation: m, H functions of
Radio-Frequency Measurements of Coherent Transition and Cherenkov Radiation: Implications for High-Energy Neutrino Detection
We report on measurements of 11-18 cm wavelength radio emission from
interactions of 15.2 MeV pulsed electron bunches at the Argonne Wakefield
Accelerator. The electrons were observed both in a configuration where they
produced primarily transition radiation from an aluminum foil, and in a
configuration designed for the electrons to produce Cherenkov radiation in a
silica sand target. Our aim was to emulate the large electron excess expected
to develop during an electromagnetic cascade initiated by an ultra high-energy
particle. Such charge asymmetries are predicted to produce strong coherent
radio pulses, which are the basis for several experiments to detect high-energy
neutrinos from the showers they induce in Antarctic ice and in the lunar
regolith. We detected coherent emission which we attribute both to transition
and possibly Cherenkov radiation at different levels depending on the
experimental conditions. We discuss implications for experiments relying on
radio emission for detection of electromagnetic cascades produced by ultra
high-energy neutrinos.Comment: updated figure 10; fixed typo in equation 2.2; accepted by PR
Photon Physics in Heavy Ion Collisions at the LHC
Various pion and photon production mechanisms in high-energy nuclear
collisions at RHIC and LHC are discussed. Comparison with RHIC data is done
whenever possible. The prospect of using electromagnetic probes to characterize
quark-gluon plasma formation is assessed.Comment: Writeup of the working group "Photon Physics" for the CERN Yellow
Report on "Hard Probes in Heavy Ion Collisions at the LHC", 134 pages. One
figure added in chapter 5 (comparison with PHENIX data). Some figures and
correponding text corrected in chapter 6 (off-chemical equilibrium thermal
photon rates). Some figures modified in chapter 7 (off-chemical equilibrium
photon rates) and comparison with PHENIX data adde
Large scale cosmic-ray anisotropy with KASCADE
The results of an analysis of the large scale anisotropy of cosmic rays in
the PeV range are presented. The Rayleigh formalism is applied to the right
ascension distribution of extensive air showers measured by the KASCADE
experiment.The data set contains about 10^8 extensive air showers in the energy
range from 0.7 to 6 PeV. No hints for anisotropy are visible in the right
ascension distributions in this energy range. This accounts for all showers as
well as for subsets containing showers induced by predominantly light
respectively heavy primary particles. Upper flux limits for Rayleigh amplitudes
are determined to be between 10^-3 at 0.7 PeV and 10^-2 at 6 PeV primary
energy.Comment: accepted by The Astrophysical Journa
Observation of exotic meson production in the reaction at 18 GeV/c
An amplitude analysis of an exclusive sample of 5765 events from the reaction
at 18 GeV/c is described. The
production is dominated by natural parity exchange and by
three partial waves: those with and . A
mass-dependent analysis of the partial-wave amplitudes indicates the production
of the meson as well as the meson, observed for the
first time decaying to . The dominant, exotic
(non- partial wave is shown to be resonant with a mass of
GeV/c^2 and a width of GeV/c^2 . This exotic state, the , is produced with a
dependence which is different from that of the meson, indicating
differences between the production mechanisms for the two states.Comment: 5 pages with 4 figure
A partial wave analysis of the system produced in charge exchange collisions
A partial wave analysis of the of the system produced in the
charge exchange reaction: at an incident momentum of
is presented as a function of invariant mass,
, and momentum transfer squared, , from the incident
to the outgoing system.Comment: 24 pages total,8 pages text, 14 figures, 1 table. Submitted to Phys
Rev
- …