6,897 research outputs found

    Correlated measurements of UHF radar signatures, RF radiation and electric field changes from lightning

    Get PDF
    During Storm Hazards - 82, simultaneous measurements are made of radar echoes, fast and slow field changes and RF radiation from lightning. Radio frequency radiation and radar echoes are also obtained during periods when the research aircraft is struck by lightning. These data are presently used to better understand the electrical processes which occur during strikes to the aircraft. Preliminary conclusions verify that the events recorded aboard the aircraft occurred during lightning but also indicate that they occur with surprising frequency very early in the flash

    Are There Topological Black Hole Solitons in String Theory?

    Full text link
    We point out that the celebrated Hawking effect of quantum instability of black holes seems to be related to a nonperturbative effect in string theory. Studying quantum dynamics of strings in the gravitational background of black holes we find classical instability due to emission of massless string excitations. The topology of a black hole seems to play a fundamental role in developing the string theory classical instability due to the effect of sigma model instantons. We argue that string theory allows for a qualitative description of black holes with very small masses and it predicts topological solitons with quantized spectrum of masses. These solitons would not decay into string massless excitations but could be pair created and may annihilate also. Semiclassical mass quantization of topological solitons in string theory is based on the argument showing existence of nontrivial zeros of beta function of the renormalization group.Comment: 12 pages, TeX, requires phyzzx.tex, published in Gen. Rel. Grav. 19 (1987) 1173; comment added on December 18, 199

    3D global simulations of a cosmic-ray-driven dynamo in dwarf galaxies

    Get PDF
    Star-forming dwarf galaxies can be seen as the local proxies of the high-redshift building blocks of more massive galaxies according to the current paradigm of the hierarchical galaxy formation. They are low-mass objects, and therefore their rotation speed is very low. Several galaxies are observed to show quite strong magnetic fields. These cases of strong ordered magnetic fields seem to correlate with a high, but not extremely high, star formation rate. We investigate whether these magnetic fields could be generated by the cosmic-ray-driven dynamo. The environment of a dwarf galaxy is unfavourable for the large-scale dynamo action because of the very slow rotation that is required to create the regular component of the magnetic field. We built a 3D global model of a dwarf galaxy that consists of two gravitational components: the stars and the dark-matter halo described by the purely phenomenological profile proposed previously. We solved a system of magnetohydrodynamic (MHD) equations that include an additional cosmic-ray component described by the fluid approximation. We found that the cosmic-ray-driven dynamo can amplify the magnetic field with an exponential growth rate. The ee-folding time is correlated with the initial rotation speed. The final mean value of the azimuthal flux for our models is of the order of few μ\muG and the system reaches its equipartition level. The results indicate that the cosmic-ray-driven dynamo is a process that can explain the magnetic fields in dwarf galaxies.Comment: 6 pages, 4 figures, accepted for publication in A&

    Cosmic-ray driven dynamo in the interstellar medium of irregular galaxies

    Get PDF
    Irregular galaxies are usually smaller and less massive than their spiral, S0, and elliptical counterparts. Radio observations indicate that a magnetic field is present in irregular galaxies whose value is similar to that in spiral galaxies. However, the conditions in the interstellar medium of an irregular galaxy are unfavorable for amplification of the magnetic field because of the slow rotation and low shearing rate. We investigate the cosmic-ray driven dynamo in the interstellar medium of an irregular galaxy. We study its efficiency under the conditions of slow rotation and weak shear. The star formation is also taken into account in our model and is parametrized by the frequency of explosions and modulations of activity. The numerical model includes a magnetohydrodynamical dynamo driven by cosmic rays that is injected into the interstellar medium by randomly exploding supernovae. In the model, we also include essential elements such as vertical gravity of the disk, differential rotation approximated by the shearing box, and resistivity leading to magnetic reconnection. We find that even slow galactic rotation with a low shearing rate amplifies the magnetic field, and that rapid rotation with a low value of the shear enhances the efficiency of the dynamo. Our simulations have shown that a high amount of magnetic energy leaves the simulation box becoming an efficient source of intergalactic magnetic fields.Comment: 9 pages, 6 figure

    A dynamical model for the heavily ram pressure stripped Virgo spiral galaxy NGC 4522

    Get PDF
    A dynamical model including ram pressure stripping is applied to the strongly HI deficient Virgo spiral galaxy NGC 4522. A carefully chosen model snapshot is compared with existing VLA HI observations. The model successfully reproduces the large-scale gas distribution and the velocity field. However it fails to reproduce the large observed HI linewidths in the extraplanar component, for which we give possible explanations. In a second step, we solve the induction equation on the velocity fields of the dynamical model and calculate the large scale magnetic field. Assuming a Gaussian distribution of relativistic electrons we obtain the distribution of polarized radio continuum emission which is also compared with our VLA observations at 6 cm. The observed maximum of the polarized radio continuum emission is successfully reproduced. Our model suggests that the ram pressure maximum occurred only ~50 Myr ago. Since NGC 4522 is located far away from the cluster center (~1 Mpc) where the intracluster medium density is too low to cause the observed stripping if the intracluster medium is static and smooth, two scenarios are envisaged: (i) the galaxy moves very rapidly within the intracluster medium and is not even bound to the cluster; in this case the galaxy has just passed the region of highest intracluster medium density; (ii) the intracluster medium is not static but moving due to the infall of the M49 group of galaxies. In this case the galaxy has just passed the region of highest intracluster medium velocity. This study shows the strength of combining high resolution HI and polarized radio continuum emission with detailed numerical modeling of the evolution of the gas and the large-scale magnetic field.Comment: 15 pages, 11 figures, accepted for publication in A&

    Large-scale radio continuum properties of 19 Virgo cluster galaxies The influence of tidal interactions, ram pressure stripping, and accreting gas envelopes

    Get PDF
    Deep scaled array VLA 20 and 6cm observations including polarization of 19 Virgo spirals are presented. This sample contains 6 galaxies with a global minimum of 20cm polarized emission at the receding side of the galactic disk and quadrupolar type large-scale magnetic fields. In the new sample no additional case of a ram-pressure stripped spiral galaxy with an asymmetric ridge of polarized radio continuum emission was found. In the absence of a close companion, a truncated HI disk, together with a ridge of polarized radio continuum emission at the outer edge of the HI disk, is a signpost of ram pressure stripping. 6 out of the 19 observed galaxies display asymmetric 6cm polarized emission distributions. Three galaxies belong to tidally interacting pairs, two galaxies host huge accreting HI envelopes, and one galaxy had a recent minor merger. Tidal interactions and accreting gas envelopes can lead to compression and shear motions which enhance the polarized radio continuum emission. In addition, galaxies with low average star formation rate per unit area have a low average degree of polarization. Shear or compression motions can enhance the degree of polarization. The average degree of polarization of tidally interacting galaxies is generally lower than expected for a given rotation velocity and star formation activity. This low average degree of polarization is at least partly due to the absence of polarized emission from the thin disk. Ram pressure stripping can decrease whereas tidal interactions most frequently decreases the average degree of polarization of Virgo spiral galaxies. We found that moderate active ram pressure stripping has no influence on the spectral index, but enhances the global radio continuum emission with respect to the FIR emission, while an accreting gas envelope can but not necessarily enhances the radio continuum emission with respect to the FIR emission.Comment: 37 pages, 26 figures, accepted for publication in A&

    Real Time Relativity: exploration learning of special relativity

    Get PDF
    Real Time Relativity is a computer program that lets students fly at relativistic speeds though a simulated world populated with planets, clocks, and buildings. The counterintuitive and spectacular optical effects of relativity are prominent, while systematic exploration of the simulation allows the user to discover relativistic effects such as length contraction and the relativity of simultaneity. We report on the physics and technology underpinning the simulation, and our experience using it for teaching special relativity to first year university students

    On the ubiquity of trivial torsion on elliptic curves

    Get PDF
    The purpose of this paper is to give a "down--to--earth" proof of the well--known fact that a randomly chosen elliptic curve over the rationals is most likely to have trivial torsion
    corecore