31,845 research outputs found

    The radar cross section of dielectric disks

    Get PDF
    A solution is presented for the backscatter (nonstatic) radar cross section of dielectric disks of arbitrary shape, thickness and dielectric constant. The result is obtained by employing a Kirchhoff type approximation to obtain the fields inside the disk. The internal fields induce polarization and conduction currents from which the scattered fields and the radar cross section can be computed. The solution for the radar cross section obtained in this manner is shown to agree with known results in the special cases of normal incidence, thin disks and perfect conductivity. The solution can also be written as a product of the reflection coefficient of an identically oriented slab times the physical optics solution for the backscatter cross section of a perfectly conducting disk of the same shape. This result follows directly from the Kirchhoff type approximation without additional assumptions

    Review of measurements of the RF spectrum of radiation from lightning

    Get PDF
    Measurements reported in the literature of the spectrum of electromagnetic radiation from lightning in the frequency range from 1 kHz to 1 GHz are reviewed. Measurements have been made either by monitoring the power received at individual frequencies using a narrow bandwidth recording device tuned to the frequencies under investigation or by recording the transient (time dependent) radiation with a wide bandwidth device and then Fourier transforming the waveform to obtain a spectrum. Measurements of the first type were made extensively in the 1950's and 1960's and several composite spectra have been deduced by normalizing the data of different investigators to common units of bandwidth and distance. The composite spectra tend to peak near 5 kHz and then decrease roughly as (frequency) to the -1, up to nearly 100 MHz where scatter in the data make the behavior uncertain. Measurements of the second type have been reported for return strokes, the stepped leader and for some intracloud processes. The spectrum of first return strokes obtained in this manner is very similar to the composite spectra obtained from the narrow-band measurements

    Sources of the strongest RF radiation from lightning

    Get PDF
    Experiments performed at the Kennedy Space Center, Florida during TRIP-78 identified sources of the strongest RF radiation from lightning in the HF-VHF frequency range. Measurements were made of electric field changes associated with RF radiation using a field change system triggered on the output of an RF detector. The field changes associated with the strongest RF radiation are very fast (10 - 20 microseconds), bipolar pulses having an initial negative going half-cycle followed by a positive overshoot. These fast pulses consistently produced more RF radiation than was associated with return strokes, and their shape was remarkably consistent, independent of frequency

    The temporal structure of RF radiation from lightning

    Get PDF
    Radiation from lightning in the RF band from 3-300 MHz has been examined. Simultaneous measurements were made of the RF radiation from lightning together with records of fast and slow field changes. Continuous analogue recordings were made with a system having 300 kHz of bandwidth in the RF channels. The temporal history of RF radiation of these frequencies consists of a sequence of discrete pulses. The data reveal a distinct pattern in the radiation which is independent of frequency and depends on the type of lightning flash: Cloud-to-ground flashes are characterized by an abrupt beginning associated with the stepped leader, whereas cloud-to-cloud flashes begin with a slower train of noise pulses more typical of the end of both types of flash. An exception to this pattern is cloud-to-ground flashes preceded by a breakdown phase, in which case the radiation begins like a cloud-to-cloud flash

    Comparison of finite source and plane wave scattering from corrugated surfaces

    Get PDF
    The choice of a plane wave to represent incident radiation in the analysis of scatter from corrugated surfaces was examined. The physical optics solution obtained for the scattered fields due to an incident plane wave was compared with the solution obtained when the incident radiation is produced by a source of finite size and finite distance from the surface. The two solutions are equivalent if the observer is in the far field of the scatterer and the distance from observer to scatterer is large compared to the radius of curvature at the scatter points, condition not easily satisfied with extended scatterers such as rough surfaces. In general, the two solutions have essential differences such as in the location of the scatter points and the dependence of the scattered fields on the surface properties. The implication of these differences to the definition of a meaningful radar cross section was examined

    Comparison of sigma(o) obtained from the conventional definition with sigma(o) appearing in the radar equation for randomly rough surfaces

    Get PDF
    A comparison is made of the radar cross section of rough surface calculated in one case from the conventional definition and obtained in the second case directly from the radar equation. The validity of the conventional definition representing the cross section appearing in the radar equation is determined. The analysis is executed in the special case of perfectly conducting, randomly corrugated surfaces in the physical optics limit. The radar equation is obtained by solving for the radiation scattered from an arbitrary source back to a colocated antenna. The signal out of the receiving antenna is computed from this solution and the result put into a form recognizeable as the radar equation. The conventional definition is obtained by solving a similar problem but for backscatter from an incident planewave. It is shown that these tow forms for sigma are the same if the observer is far enough from the surface

    RF radiation from lightning correlated with aircraft measurements during storm hazards-82

    Get PDF
    During the Storm Hazards Experiment 1982, the Goddard Space Flight Center monitored radiation from lightning from a site at the Wallops Flight Facility, Wallops Island, VA. Measurements were made while the NASA F106 penetrated thunderstorms to obtain data on lightning strikes to the aircraft. The objective of the ground-based measurements was to help determine if the events recorded by the F106 were part of lightning discharges. During the experiment, 53 cases were obtained in which events were recorded aboard the aircraft while reliable quality RF radiation was recorded on the ground. These cases came from 12 different storms occurring from June through August 1982. The data confirms that the aircraft was measuring events which were part of lightning and indicates that the events recorded on the aircraft tend to occur early in the flash

    A proposed method for wind velocity measurement from space

    Get PDF
    An investigation was made of the feasibility of making wind velocity measurements from space by monitoring the apparent change in the refractive index of the atmosphere induced by motion of the air. The physical principle is the same as that resulting in the phase changes measured in the Fizeau experiment. It is proposed that this phase change could be measured using a three cornered arrangement of satellite borne source and reflectors, around which two laser beams propagate in opposite directions. It is shown that even though the velocity of the satellites is much larger than the wind velocity, factors such as change in satellite position and Doppler shifts can be taken into account in a reasonable manner and the Fizeau phase measured. This phase measurement yields an average wind velocity along the ray path through the atmosphere. The method requires neither high accuracy for satellite position or velocity, nor precise knowledge of the refractive index or its gradient in the atmosphere. However, the method intrinsically yields wind velocity integrated along the ray path; hence to obtain higher spatial resolution, inversion techniques are required

    The influence of ground conductivity on the structure of RF radiation from return strokes

    Get PDF
    The combination of the finite conductivity of the Earth plus the propagation of the return stroke current up the channel which results in an apparent time delay between the fast field changes and RF radiation for distant observers is shown. The time delay predicted from model return strokes is on the order of 20 micro and the received signal has the characteristics of the data observed in Virginia and Florida. A piecewise linear model for the return stroke channel and a transmission line model for current propagation on each segment was used. Radiation from each segment is calculated over a flat Earth with finite conductivity using asymptotics approximations for the Sommerfeld integrals. The radiation at the observer is processed by a model AM radio receiver. The output voltage was calculated for several frequencies between HF-UHF assuming a system bandwidth (300 kHz) characteristic of the system used to collect data in Florida and Virginia. Comparison with the theoretical fast field changes indicates a time delay of 20 microns

    Simulation of radiation from lightning return strokes: The effects of tortuosity

    Get PDF
    A Monte Carlo simulation has been developed for the electromagnetic fields radiated from a tortuous lightning channel. This was done using a piecewise linear model for the channel and employing for each element the field radiated by a traveling wave on an arbitrarily oriented filament over a conducting plane. The simulation reproduces experimental data reasonably well and had been used to study the effects of tortuousity on the fields radiated by return strokes. Tortuosity can significantly modify the radiated waveform, tending to render it less representative of the current pulse and more nearly unipolar than one would expect based on the theory for a long straight channel. In the frequency domain the effect of tortuosity is an increase in high frequency energy as compared with an equivalent straight channel. The extent of this increase depends on the mean length of the elements comprising the channel and can be significant
    corecore