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THE RADAR CROSS SECTION OF DIELECTRIC DISKS

ABSTRACT

A solution is presented for the backscatter (monostatic) radar cross section of dielectric disks

of arbitrary shape, thickness and dielectric constant. The result is obtained by employing a

Kirchoff-type approximation to obtain the fields inside the disk. The internal fields induce

polarization and conduction currents from which the scattered fields and the radar cross section

can be computed. The solution for the radar cross section obtained in this manner will be

shown to agree with known results in the special cases W normal incidence, thin disks and per-

fect conductivity. It will also be shown that the solution can be written as a product of the

reflection coefficient of an identically oriented slab times the physical optics solution for the

backscatter cross section of a perfectly conducting disk of the same shape. This result follows

directly from the Kirchoff-type approximation without additional assumptions.
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THE RADAR CROSS SECTION OF DIELECTRIC DISKS

I. Introduction

Althot.gh much research has been done on the scatterin g properties of perfectly conduc-

ting disks (Meixner and Andrejewski, 1950; Andrejewski, 1952; Ruck, et. al., 1970; Bowman, et.

al., 1969; Hodge, 1980) little has been done on scattering from dielectric disks (Ruck, et. al.,

1970), and most of the work which has been done applies to thin dielectric disks. For exk:a-

ple, Schiffer and Thielheim (1979) developed an analytic solution for scattering from a thin

dielectric disk by employing a Rayleigh approximation to find the equivalent sources induced

inside the disk.	 The approximation is valid as long as the thickness is small compared to wave-

length and also small compared to the cross section of the disk. Weil and Chu (1976a-b) de-

veloped a numerical solution for the thin dielectric disk also solving for the equivalent sources

induced inside the disk but used an approach similar :o the moment method to obtain the in-

ternal currents. They chose a set of basis functions for the radial and angular dependence of

the currents but kept only the first order term in a power series expansion in thickness. Their

solution applies to disks whose cross section is comparable to wavelength. Using a different

approach, Neugebauer (1956, 1957) treated scattering from thin dielectric disks by using Babi-

net's principle after modifying it to apply to dielectric screens. He then used a physical optics

approximation to treat the aperture and obtained results for normal incidence which were in

agreement with experiment (Neugebauer, 1957; Ruck, et. al., 1970). Recently, dielectric disks

of arbitrary thickness were treated by Le Vine, et. al, (1982). This was done using by solving

for the currents induced inside the disk by assuming that the fields inside the disk are the same

as the fields inside an identically oriented slab of the same thickness and dielectric properties.

This is a high frequency approximation reasonable when edge effects are not important, as for

example in disks whose cross section is large compared to wavelength. This approximation does

not require the disk to be thin compared to wavelen gth and therefore should include the thin

4.,
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dielectric disk as a special case. The scattering properties of dielectric disks whose physical

cross section is large compared to wavelength. but whose thickness is not necessarily small com-

pared to wavelength, are important in a variety of applications such as in remote sensing of

vegetation as a model for leaves (Lang, 1981; Lang, Seker and Le Vine, 1982) or in remote

sensing of clouds as models for ice crystals.

The purpose of this paper is to present a solution for the backscatter radar cross section

of a dielectric disk using the solution of Le Vine, et. al. (1982) for the scattered fields. It

will be shown that this solution reduces to the results obtained by Schiffer and Thielheim

(1979) when the disk's thickness is very small compared to wavelength, and in fact is a general-

ization of their result which includes the case of vertically polarized incident radiation. It will

also be shown that this solution reduces to the physical optics solution for perfectly conducting

disks when the conductivity becomes large, and that the solution agrees with the results obtained

by Neugebauer (1957) in the special case of normally incident radiation, Finally, it will be

shown that the solution for the backscatter radar cross section can be written as a product of

the physical optics solution for the backscatter cross section of a perfectly conducting disk of

the same shape times the magnitude squared of the reflection .coefficient of an identically

oriented dielectric slab. This result, which has been suggested intuitively from special cases

(Ruck, et. al., 1970) follows directly from the Kirchoff-type approximation for the internal fields

without further assumptions and applies (formally) at all angles of incidence.

In the first section to follow the solution obtained by Le Vine, et. al. (1982) for the fields

scattered from an arbitrarily oriented dielectric disk will be outlined and then used to obtain an

expression for the backscatter cross section. Numerical examples will be presented in this section

for die radar cross section of a circular disk. In the following section it will be shown that this

result agrees with the special cases which have been treated in the past (i.e., thin disk, normal inci-

dence and perfect conductivity). Finally, in the last section, it will be shown that the solution

q	

7
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can be written as a product of the radar cross section of a perfectly conducting disk times the

magnitude squared of the reflection coefficient of an identically oriented dielectric slab. a form

which is intuitively satisfying at high frequencies and is convenient to use.

II. Radar Cross Section

Consider a plane wave incident on an arbitrarily oriented dielectric disk. The plane wave

is assumed to have polarization (direction of the electric field) q and to be propa gating in the

i direction:

Einc 
(_) = q Eo eiko ' r	

(1)

and the disk is assumed.to have cross sectional shape S(F), thickness T and to be comprised of

material with relative dielectric constant er = e
r I + j Er ", er is assumed to be constant through-

out the disk and the shape of the disk S(r) is arbitrary. (S(r) = 1 on the disk and S(r) = 0

otherwise.) It is desired to determine the radar cross section of the disk, a q in the case of

backscatter (monostatic cross section). Following convention (Ruck et. al., 1970; Ishimaru,

1978) ucq is defined in terns of the scattered electric Escat (r) with polarization in the p dir-

ection due to an incident wave Ei.c (r) with polarization q as follows:

	

.	 2

	a,q	 Lim 4 rRZ	
p 

Escat
—^	 (2)

R-+ oq	 I q ' Einc

Equation 2 will be evaluated here for the case of backscatter using a Kirchoff-type approxima-

tion to obtain the scattered fields.

The formal solution for the scattered fields can be obtained in terms of the fields inside the

disk using standard procedures (e.g. Ruck, et. al., 1970; Le Vine, et. al. 1982). One obtains:

E scat (r) = ko 2 l I I (er - 1 ) E (r') • 'G (Fir) dr	 (3)
volume

__ k R

where G (F r) is the dyadic Green's function for free space. ^ ( -r/—r)_ (i + 
k 12 

0 7) 
e rr R0

3
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where R = r - "r' is the distance between source point c' and observation point ?. Equation

3 is to be evaluated in the far field of the disk (R -* oo) in which case G (F,,r) a! (T - 4 Q)

e iko ( Ro - o • i:')

4 z Ra	

„
•	 where R o is the distance from the center of the disk to the observer and u

is a unit vector from the coordinate origin at the center of the di_,k toward the observer. To

obtain a solution the fields inside the disk must be obtained. 'These aren't known in general

and will be approximated here by replacing the disk with an identically oriented slab with the

same dielectric properties and thickness and using the fields inside the slab for E (r) in Equa-

tion 3. This approximation is similar to the Kirchoff approximation employed in pl:vsical op-

tics to solve for scattering from perfectly conducting surfaces, and ought to be reasonable when

edge effects aren't important such as in the case of disks whose cross section is much .greater

than a wavelength. This approximation has the advantage that it employs a canonical fori

(i.e., the fields inside the disk are a solution to Maxwell's equations) and yields the correct so-

lution in the limit of a disk with infinite cross section. The solution for the fields inside the

slab and the subsequent evaluation of Equation 3 are straightforward but messy. The details

are described in Le Vine, et. al. (1982) where it is shown that the scattered field of polariza-

tion type p due to an incident wave of polarization type q can be written in terms of a dyadic

scattering amplitude, f(i, o) as follows
x
i ejkR
'	 p 'E scat (r ► q) _ (p	 f(i, a) ' q] E 	 R	 (4)

0

Substituting this result into Equation 2 one obtains:

°	 2.pq	 47r I p	 f(i, o) • q 1 	 (5)

The general expression for Ri, o) in the case of arbitrary polarization, an gle of incident and

orientation is complicated. However, the expression simplifies in the special case of backscatter

4
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(o = - ), and simplifies further and if one restricts attention to the case in which the normal

to the disk, n, is in the plane of incidence., This is a completely general case which can always

be obtained for a single disk wikh a simple rotation of coordinates, In this case, choosing p

and q to be unit vectors in the direction of horizontal (h) or vertical (v) polarization defined with

respect to the plane of incidence, one obtains:

z

ahh = [sinc (atn+) - rh ejux sinc (onj ] eh So	 S2 (v' 	 (6a)

_	 e;2
avv _ [Y+ sinc (an+) - r. e1'ar 	 sinc (aSZ, ] 

^ S 
C	 5= (vt)

	

(6b)
.	 r

Chv - avh - 0	 (60

where a = Y_ k o T and So - 1 T ko (er - 1) are constants and
4tr

Ga

d

(7a)

(7b)

(7c)

(7d)

(7e)

(7f)' 

SEA	 = cos (6) + r

7±	 = sin2 (6) :; cos (a) r

r	 = vre - siZ7 8

th,v exp (- jaiZ-)

1 - rh'v expo4ar)

CCs 8 — ah,v r
rh,v 	 =

CCs a + ah'v r

2 cos 8

th,v	 cos e + kv r <` , ^h,v

In the proceeding & = 1 and v = 1/er ; and 8 is the angle between the direction of propa-

gation of the incident wave, i, and the normal to the disk, n; the coefficients rh v and th,v

are the reflection and transmission coefficients of a halfspace with the same dielectric constants

as the disk; and env are the amplitudes of the waves inside the disk propagating inthe negative

5
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d irection (measured with respect to n) and excited by a unit amplitude incident wave of hori-

zonta+ or vertical polarization, respectively, (The exponent. 2, in Equations 6 means ma=nitude

squared: The quantity times its complex conju gate. This short hand will be adopted through_
b

out this text.)	
..

•	 Notice that with the geometry being considered here there is no depolarization 	 '!

(ahv = avh = 0). This is nbt true when the-disk is tilted so that n is not in the plane of inci-

dence as is evident from the more general form of the solution for the scattered fields (Le

t
Vine, et. al., 1982; Figure 5). However, this depolarization is a consequence of the definition

of thepolarization vectors and for a single disk can always be removed by a suitable change

of coordinates and appropriate new definition of the polarization vectors. Also notice that

both ahh and a. are propo ► ,ional to S(v,). S(Ft ) is the Fourier transform of the cross section-

al shape S(r) of the disk evaluated at frequencies v t which in the case of backscatter are: P t =

n x G x n) (See Le Vine, et. al., 1982; Appendix C). For a disk with a circular cross
J 1 (2 k o a sin 8)

section S(v t) = sra'-

	

	 where a is the radius of the disk and 6 is the angle be-
ko a ,in 6

tween i and the normal to the disk, n. In comparison to S(v t), the factors iri brackets	 in

Equations 6 are generally slowly varying functions of 8.

To illustrate the characteristics of the solution several examples of the radar cross section

of a circular disk as a function of 8 have been computed. These are shown in Figures 1-4.

Figures 1 and 2 show ahh (6) and av, (9) respectively for a circular disk with radius a = 20

cm, thickness T - 5 cm, relative dielectric constant Cr = 11 and with incident radiation at fre-

quency f = 9 GHz (ka 9! 36). Notice the peak at 6 = 0 (normal incidence) and the rapidly

oscillating decay as a function of 9, which are due primarily to S(v t). The effects of the

remaining factors in Equations 6 can be seen at large B by comparing a hh and a,,. Figures

I. and 2 are representative of the radar cross section of circular disks. Increasing ka causes

the radar cross section to become more peaked at 0 = 0 and to oscillate more rapidly as a
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function of 8 and a decrease in ka results in	 a broadened peak and slower oscillations. but

in general the shape is not changed, Changing the dielectric constant or adding loss effects

the amplitude of the cross section but CN .,ept in special cases the behavior as a function of

8 remains as indicated in Figures 1 and 2. An example of the radar cross section of a 	 4 `,'

circular disk with lossy dielectric constant is shown in Figure 3. ahh (8) is shown for a

circular disk with radius a = 10 cm, thickness T = ,5 cm, relative dielectric constant e, =

21 5 + j 11 and at a frequency f	 9 GHz (ka 9! 18). Notice the broadened peak at nor—	 ?'
3i

mal incidence and the reduced number of oscillations in comparison with Fi gure 1 which	 a
i!

are due to the smaller ka; however, the overall shape of the curve is similar to rhose for

the * lossless dielectric disk in Figures I and 2. One of the special cases where dramatic 	 3

changes in radar cross section can occur independent of shape, is when the disk's thickness 	 I

becomes an odd multiple of half a wavelength. Figure 4 shows a hh (8) for such a case.

The disk is the same as in Figure 3 except that the relative dielectric constant is er = 11

(no loss). In this case T = X/2 where \ is the wavelength inside the disk. When T 	 X/2

the waves ,inside the disk add in phase at the surface of the disk and as a result the reflec-

tion coefficient is very small. This is clearly evident in a hh (9) and is especially noticeable

at normal incidence where the peak is significantly reduced in amplitude.	 If the dielectric

is lossy, then the amplitude of the waves is changed as they propagate through the disk and

so this resonance is much less pronounced. (For example, see Figures 10-13 in Le Vine,

et, al., 1982).

1
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III, Special Cases:

In this section it will be shown that the radar cross section (Equations 6) agrees with the	 Y

special cases available in the literature. It will to shown that at normal incidence Equations 6

yield values confirmed by experiment: that in the limit of perfect conductivity Equations 6 re-

duce to the physical optics solution; and that For thin disks they are consistent with the solu-

tion obtained using a Rayleigh approximation.

A. Normal incidence

At normal incidence 9( pt ) = A for all shapes where A is the area of the disk. Also in

this case r _Jar ; y+ _ ±V1'_er  tid St_ = 1 ± /—er  , Substituting these results into Equations

6 and writing the functions sinc (aSE±) in terms of exponentials one obtains the following re-

sults after some strai ghtforward manipulations:

Qhh (8)	 on, (e) - ka2 A I Rn I	 (8)
Jr

where Rn is the reflection coefficient of a slab of thickness T centered at the origin. In the

notation adopted here

Rn =	 [ 1 - ^j 4°`1 rh eh a
- i«(l +	 (9)

For disks which are large compared to wavelength, theory and experiment (Ruck., et. al., 1970)

indicate that at normal incidence the radar cross section .is:

	

chh (0) = or, (0) = Qoo I Rn (=	 (10)

where oao = (k o A)- f v is the radar cross section at normal incidence of a perfectly conducting

disk of area A, and Rn is the reflection coefficient of an infinite slab of the same thickness

and dielectric constant as the disk. Clearly this is in agreement with Equation 8.

Equation 10 can be obtained from the solution Neugebauer derived for the scattered fields

8
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due to a normally incidetk>, plane wave,,  (Neugebauer, 1957; Ruck, et. al,, 1970). This result

agrees with .the experiments of Severna and von Baeckmann (1951: and Ruck. et. al., 1970),

Neugebauer obtained the result through an application of Babinet's principle modified to in-

clude dielectric screens and in reporting this work Neugebauer implies that the screen must be

thin; however such a restriction is not required to obtain Equation 8.

	

B. Perfect Conductivity 	 .

Consider the limit when e r becomes very- large and imaginar; (er -^ je. r" and er" -► oo).

In this case:

	

r -* Y2 (1 + j)	 Er	 (1la)

nt -, r	 (l lb)

	

r
++ n- --> 2 cos (e)	 (l lc)

eh,Y -y e^ac 2- 
th,v	

(11 d)

Using these limiting forms in Equations 6 and 7 one obtains:

Crhh	 C	 ._ Sol 2 92 (V,) G2a)
+

Q,,,, (e )	 [ 
7+ tv 

If S o 1 2 92(vt)	 (12b)
*an E r

and since th	2 cos (9)/r and 7+ to -* 2 cos (8) as	 oo one obtains the following result

in the perfectly conducting limit:

k 2

abh (8) = a. (8) _	 ° cos2 (8) 92 (v t )	 (13)
7r

For a circular disk of radius, a, this becomes:

	

9	
B _ [ k o (ir a)2 2	

t 8	
1(2koa sin 8)	 2

0

	

hh O	 o . O	 ^	
cos	

ko a sin $	
(14)

9
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which is the result obtained using physical optics for the perfectly conducting disk (Ruck, et.

al. 1970). This resuit is rafher to be expected because the physical optics solutict^- ti fid ,che

solution obtained here follow from a Klrchoff-type approximation and because the solution em-

ployed here for the fields inside the slab is valid for arbitrary dielectrics, including very lossy

slabs.

C. Thin Dielectric Disks:

The case when k0T Vre—r << 1 has been treated by Schiffer and Thielheim (1979) for the

case of an incident horizontally polarized wave. In their formulation Schiffer and Thielheim-

begin with Equation 3 and make a Raylei gh approximation for the fields inside the disk. That

is, they find the fields inside using results from electrostatics for very thin plates. One can

show that the fields inside an infinite slab reduce to this approximation when the slab thickness

++ to zero; consequently, one would expect Equations 6 to reduce to the Schiffer and Thiel-

heim result when T -* 0. In fact, this is the case.

In the limit as T goes to zero, one has:

	

sinc (cM,.)	 (15a)

eh,v -► lam;—	 (15b)
h,v

Hence Equations 6 reduce to

Qhh 
-► [(1 - rh ) eh So ] S'-(vt ) _ [ S o ] S'i 2 (Yt )	 (16a)

e-	 sing 6 6 Cos t 612
a.,-,	(7+ .. rv7-)	 So	 S2 (v t) =	 vhh (16b)

Y Cr	 er	 i

and in the case of a disk with circular cross section, one obtains:

'(k 0(7r x2 11'-	 J1(2ko a sin 8) '-
Q	

1	 ^^0	 r - 
1)l ^	 2k 0 a sin 9	 (17)

10	 _.
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0
which is the same as c.btained by Schiffer and Thielheim. (Note, Schiffer and Thielheim's

Equation 27 should be F = [ 2 ( 1 - sin8 sin8) - (cosA - eosS)'-

An example of the 4 radar cross section of a thin disk is shown in Figures 5-6. Figure 5
 4

shows a^,'h (8) and Figure 6 shows a ,j,, (8) for a disk with radius a = 20 cm, thickness T

.04 cm, relative dielectric constant e r = 25 + j 11 and at a frequency f = 5 GHz. This case is

representative of haves (e.3. soybean leaves) at microwave frequencies. Notice that near normal

incidence (8 - 0) the Curves for ohh (8) and oW (8) are very similar, but differences in the

radar cross sections for the two polarizations are apparent for larger values of 8. Figures 5

and 6 have the same general characteristics evident in Figures 'I and 2 for thicker disks because

S(v^) is the dominant feature of both cases.

The equivalence in the thin disk limit; of the solution derived here (Equations 6) with a
f

solution obtained using the Rayleigh approximation is not a . coincidence. In fact, one can show

that the fields inside a slab (the approximation employed to obtain Equations 6) yields the Ray-

leigh approximation when the slab is thin. This suggests that for thin enough disks Equations

6 may apply at both high and low frequencies. For example, let k oa > 10 be the criterion

for the high frequency approximation to be valid, and let k QT < 1/10  be the criterion for the

Rayleigh approximation to apply to thin disks. Now, if one chooses the thickness so that koT

< 1/10 when k oa = 10, then for lower frequencies the Rayleigh approximation applies and for

higher frequencies the Kirchoff-type approximation applies. Since Equations 6 embody both

approximations, they apply in this case at all frequencies. Clearly such a disk most be very

'	 thin compared to its cross section (e.g. a/T > 100); however, this is not unrealistic for leaves

of plants such as soybeans.

11
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IV. General Form of the Radar Cross Section

Equations 6 can be written as a product of the radar cross section of a perfectly conducting

disk and the reflection coefficient of an identically oriented slab as w i ll bP shown in this see-

tion,

The reflection coefficient, Rh,v , vi a slab of thickness T and dielectric constant Er for hori-

zontally (h) or vertically (v) polarized incident plane waves is: 	 l

R „ _ yz e+ elan+ + r	 e- elan	 (1 + x )	
^h e -i20.	

(18)h, ,	 h,
v
	h,v h,v 	h,v

h,v

where

Xh	 Er X, = r/cos 8	 (19a)

eh v = - rhv ej4ar eh^v 	 (19b)

The ehw are the amplitudes of the waves inside the slab propagating in the positive and nega-

tive n-direction (i.e. positive or negative with respect to the normal to the disk), This expreG-

sion for Rhw is obtained in a straight forward manner by matching boundary conditions at the

slab interfaces and solving for the amplitude of the reflected plane wave (e.g. Born and Wolf,

1959). The form given above assumes that the origin is at the center of the slab. After some

simple rearrangements one obtains:

I Rt 1 2 _ ys [[l  - ej4ar ] ern- e- 
cos 8	

(20a)

e;,	 Ercoso — r	 2

RV ^'- = y, [ I - ej4ar ] e-jf2-	
E [	 cos 8	 ]	 (20b)
r

It is not difficult to show that Equations 6 can be written ir. the following form:

ahh = J^	 sinc (an+) - rh ej2al' sinc (an-)] eh 
	

(21a)	
Fl

cos 8

e-	 at(er -1) 2
a	 ['7+ sinc (an+) r.ej2ar 7-sinc (an-)]	

E	 cos 6 
1^ (21b)

r	 j

p
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where a00 is the physical optics solution for the backscatter cross section of a perfectly con-

ducting disk: a.„ = (ko cos @)'- 
S'- (u t). Vow, comparing Equations 20 and 21 and using

the following relationships

St+ St_ = 1 — er	 (221a)

Sr+ 7_	 = er cos 9 + r	 (32b)

SZ_ 7+	 = er Cos 8 1	 (22c)

sinc(CYni) 23d= 
ejCY ± _ ^^CXSZ±	

)
? jcxSZ±

_

rh	 ^+	 (22e)

er e - P	 ^_ 7+
ry	

n+ 7.;

one obtains the following results:

ahh =	 ao, JRh 1 R (33a)

a n, =	 a,, IR,,J'- (23b)

That is, the radar cross section for backscatter from a dielectric disk is the radar cross section

of a perfectly conducting disk of the same shape (physical optics form) times the reflection co-

efficient of an identically oriented (identical B) slab of the same thickness and dielectric prop-

erties.

As 3 check on this result, notice that Equations 23 include all of the special cases discussed

above. For example, for a perfectly conducting disk R h = RV = -1 and so ahh = avv = aoo

and in the case of a thin disk (T - 0) one has

R -^ j4ar	
(cos 8 + r)(cos 8 - r) 	

(? a)
(cos 8 + r)- - (cos - FT
h 

13
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(Er cos a + r) (er cos a	 r)
jar	 —	 (24b)

( , er COS e + r)	 ( Er COS a - T')^

which, when substituted into Equations 	 rents in Equation 16 and agrees with the Schiffer and

Thielheim result for o hh (Equation 17),

Recalling that there is no depolarization when i and n are in the plane of incidence one can

now write the backscatter radar cross section in the general form:

°Pq — °0 RP 
12 aPq	

(25)

where pT-q

Spq = (? 6)

1 p 

and p and q indicate either horizontal polarization (h) or vertical polarization (v); that is p e ^h,v)

and q e jh,v} .

r

14
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Conclusion

A solution for the radar cross section of a dielectric disk lias been obtained by using a

Kirchoff--type approximation for the fieiLls inside the disk. The result takes the simple form

apq _ Qo, I R 
z

P	 SpQ

where voa is the physical optics form for the backscatter cross section of 'a perfectly conduc- 	 s2

ting disk of the same shape and RP is the reflection coefficient for an incident wave of polar-

ization p e I h,v } of an identically oriented slab of the same thickness and dielectric properties

as the disk. This special form applies when the normal to the disk is in the plane of incidence

The solution agrees with special cases previously obtained for scattering from dielectric disks:

It reduces to the physical optics solution for scattering from perfectly conducting disks when
	

f

the disk is very lossy; it reduces to the form obtained by Schi_fer and Thielheirn for very thin
	

l

disks; and at normal incidence, it has the form obtained by Neugebauer and verified by experi-

ment; This solution applies.for arbitrary dielectric constant, arbitrary thickness and shape and

arbitrary angle of incidence; however, the solution is inherently a high frequency approximation

(because of the Kirchoff-type approximation) and therefore should be applied with caution

near edge-on incidence or when the cross section of the disk is not large compared with wave-

length.
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Figure Captions

A Y.

Figure 1: Radar cross section Qhh (8) for a cirauiar disk
t

with radius a = 20 cm, thickness

T = 5 cm, relative dielectric constant e	 =	 11 and frequency f = 9 GHz.

Figure 2: Radar cross section ov, (8) for a circular disk with radius a = 20 cm, thickness

T = 5 cm, relative dielectric constant er = 11 and frequency f = 9 Ci iz.

Figure 3: Radar cross section a h 
(8) for a circular disk with radids a = 10 em, thickness

T = .5 cm, relative dielectric constant er = 25 + j 11 and frequency f = 9 GHz.

Figure 4: Radar cross section Qhh (8) of a circular disk one half wave length thick:

radius a = 10 cm, thickness T = .5 cm, relative dielectric constant e r = 1 I and

frequency f = 9 GHz.

Figure 5: Radar cross section oh (0) of a thin circular disk.	 Disk radius a = 20 cm, thick-

ness T = .04 cm, relative dielectric constant e r = 25 + j I l and frequency f = 5

GHz.

Figure 6:	 Radar cross section a,N (8) of a thin circular disk. Disk radius a = 20 cm, thick-

ness T = .04 cm, relative dielectric constant e r = 25 + j 1l and frequency f 5

GHz.
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