NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

misn Technical Memorandum 82053

A Proposed Method for Wind Velocity Measurement From Space

Dan Censor and David M. Le Vine

NOVEMBER 1980

National Aeronautics and
Space Administration
Goddard Space Flight Center Greenbelt. Maryland 20771

A PROPOSED METHOD FOR WIND VELOCITY MEASUREMENT FROM SPACE

Dan Censer and David M. Le Vine

November 1980

A PROPOSED METHOD FOR WIND VELOCITY MEASUREMENT FROM SPACE
 Dan Censor* and David M. Le Vine**

Abstract

An investigation has been made of the feasibility of making wind velocity measurements from spare by monitoring the apparent change in the refractive index of the atmosphere induced by motion of the air. The physical principle is the same as that resulting in the phase changes measured in the Fizeau experiment. It is proposed that this phase change could be measured using, for example, a three cornered arrangement of satellite borne source and reflectors, around which two laser beams propagate in opposite directions. It is shown that even though the velocity of the satellites is much larger than the wind velocity, factors such as change in satellite position and Doppler shifts can be taken into account in a reasonable manner and the Fizeau phase measured. This phase measurement yields an average wind velocity along the ray path through the atmosphere. The method requires neither high accuracy for satellite position or velocity, nor precise knowledge of the rafractive index or its gradient in the atmosphere. However, the method intrinsically yields wind velocity integrated along the ray path; hence to obtain higher spatial resolution. inversion techniques will be required. This paper addresses the general principle of the technique and presents a particular system configuration as an example, to show that wind measurements are possible.

[^0]
CONTENTS

Page
ABSTRACT iii
INTRODUCTION 1
THE FIZEAU EXPERIMENT AND ITS APPLICABILITY TO ATMOSPHERIC MEASUREMENTS 4
SATELLITE CONFIGURATIONS 7
ANALYSIS OF SATELLITE MOTIONAL EFFECTS 9
SIGNAL PROCESSING 15
COHERENCE CONSIDERATIONS 21
SUMMARY 25
REFERENCES 26
FIGURES 1-5 27
APPENDIX A: A LIST OF OPEN PROBLEMS 33

A PROPOSED METHOD FOR WIND VEI.OCITY MEASUREMENT
 FROM SPACE

INTRODUCTION

The present report is a study of the potential for measuring wind velocity using the phase change induced in two coherent laser beams traversing the atmosphere in opposite directions. It will be shown that a coherent measuremen ". :easible from space and can be accomplished in spite of the motion of the satellites. At a first glance this seems to be a formidable task. Satellites are moving at velocities of the order of $10 \mathrm{~km} / \mathrm{sec}$, while wind velocities are of the onder of 1 to $10 \mathrm{~m} / \mathrm{sec}$, a difference of several orders of magnitude. In addition, the position of the satellites is not available to within an accuracy of an optical wavelength, which would seem to be important for a coherent experiment. However, it is shown below that these problems can be adequately resolved. This method does not require extraordinary accuracy of satellite position and velocity, in fact. resolution of the order of $1-10 \mathrm{~m}$ is sufficient. Also, one does not need a detailed k nowledge of the atmospheric refractivity and its gradient, beyond that available from existing models and data. On the other hand, we have assumed the availability in space of laser systems for remote sensing purposes. While this is still a thing of the future, there is a reasonable prospect that such systems will exist towards the end of the century.

In order to put the present study in the right perspective, it is worthwhile to quote from Ciordon Little ${ }^{1}$: ". . In Ineneral, the development of a remote sensing concept can be seen to follow a logical sequence. In Step A, the concept is identified, and preliminary first order estimates made of its feasibility. In Step B, the potential capabilities and limitations of the concept are analyzed theoretically in considerable detail. If the concept still appears attractive, the development of rescarch equipment for the experimental evaluation of these capabilities and limitations takes place in Step (. Assuming that this quantitative experimental evaluation of the concept is successful. the next stage (Step D) is to build a development model (as opposed to a rescarch model) which is thought
of as a prototype of an operational unit which is to be capable of being used in the field by the research workers or technicians other than the original research group. If the concept continues to show promisc. Step E involves working with industry to obtain commercially built units for field evaluation. Once this stage has been successfully completed, the final stage (Step F) requires that fully evaluated commercial units be routinely available for procurement." Obviously the present report is mainly concerned with Step A. At this stage we close our eyes to budgetary requirements, and important engineering problems such as detectability of signals by means of existing or projected optical instrumentation, the problem of tracking, and probably many others.

The method to be presented below possesses many features which make it attractive as complementary to other systems when they operate under adverse conditions. For example, some information about winds con be obtained by monitoring cloud motion. In contradistinction, the present method is suitable for clear skies. Other microwave radar and radiometry methods ${ }^{2}$ correlate wind measurements and sea state. The present method will work equally well over sea and land and at arbitrary elevations. Unlike atmospheric radar or lidar, the present method does not depend on backscattering trom irregularitics and particles. Since it is based on forward propapation, a tramsparent line of siqht will yiek the best results. Other line of sight methods exist. see for example Ishimaru ${ }^{3}$, relying on the presence of atmospheric inhomogeneities. These methods are particularly useful for measuring transverse winds, while the present method yields the wind component abone the heam. It is also notable that the present method does not require exceptional imaging qualities, which would tend to make the op, ical equipment costly and heavy.

In the sections to follow, the theory of the Fizean experment is hrietly reviewed and its applicablity to the atmosphere considered. Then. typical configurations applicable to masuring wind, are discused. The Doppler effect is discussed in detail. This is relevant to the presemt method hecanse th the change of frequency and direction of propagation, occurme durme reflectent from movery sutelltes. Next, an outhe of the signal processing necessary to effed a measurement is presented. showing that in pronciple the Fivau phase offsets are measurable in the prevence of the
various Doppler effects. Finally a brief discussion of the coherence problem is given. Clearly, if the present concept survives scrutiny by the scientific community, this and many other aspects of the system will have to be discussed in greater detail.

THE FIZEAU EXPERIMENT ANI ITS APPLICABILITY TO ATMOSPHERIC

MEASUREMENTS

The present method for wind velocity measurement is based on the measurement of the Fresnel convection coefficient in the Fizeau experiment ${ }^{4}$. One possible variant of the Fizeau experiment is depicted in Fig. 1. This is an interferometer in which two light beams. emanating from a common source, traverse a moving fluid in opposite directions. Experimentally one finds that the emerging waves differ in phase by an amount which is proportional to the velocity. The analysis of the Fizeau experiment is based on the Lorentz transformation for frequency and propagation vector. which to the first order in v/e takes the forms

$$
\begin{align*}
& {\underset{\sim}{k}}^{\prime}=\underset{\sim}{k}+\omega \underset{\sim}{v} / \mathbf{c}^{2} . \\
& \omega^{\prime}=\omega+\underset{\sim}{k} \cdot \underline{v} . \tag{1}
\end{align*}
$$

where $\underset{\sim}{v}$ is the velocity of the fluid as observed in the laboratory frame of reference. $c=3 \cdot 10^{8}$ mosec is the speed of light in free space: k and ω are the propagation vector and (angular) frequency, respectively, in the comoving frame of reference where the medium is observal to be at rest. The primes demote guantities measured in the laboratory reference trame, yuantitis in the comoving frame have no primes. In the comoving frame the refractive index is defined by

$$
\begin{equation*}
n=\frac{c}{\omega} \sqrt{k \cdot k} \tag{2}
\end{equation*}
$$

and n is assumed to be independent of frequency (i.e. . nondispersive). Hence in the laboratory frame one observes, to the first order in v / e :

$$
\begin{equation*}
n^{\prime}=\frac{\dot{c}}{\omega^{\prime}} \sqrt{\underline{k^{\prime}} \cdot \underline{k}}=n \quad\left(n^{2} \quad 1\right) \frac{\underline{k} \cdot \underline{v}}{|\underline{k}| c} \tag{.3}
\end{equation*}
$$

and when k and v are codirectional, this becomes

$$
\begin{equation*}
n^{\prime}=n\left(1 n^{2} \quad 1\right)+\therefore \tag{4}
\end{equation*}
$$

 by the selocity of the moving flud t is this effect which provides a method for diee meaviment
of wind velocity in the atmosphere. The phase change accumulated by an electromagnetic wave along a trajectory (ray) is given by

$$
\begin{equation*}
\phi=\frac{\omega^{\prime}}{c} \int_{P_{1}}^{P_{2}} n^{\prime} d L \tag{5}
\end{equation*}
$$

where the integration is aleng the ray from P_{1} to P_{2}. Referring to Fig. 1 , it is clear that the total phase difference between the rays is

$$
\begin{equation*}
\Delta \phi=\frac{4 \pi L v}{\lambda c}\left(n^{2}-1\right) . \tag{6}
\end{equation*}
$$

For tenuous media like the atmosphere it is convenient to define a refractivity \mathbf{N} by $\mathbf{N}=(\mathrm{n} .1) \cdot$ 10^{6}, hence (6) can be approximated by

$$
\begin{equation*}
\Delta \phi=8 \pi \operatorname{LvN} 10^{-6} /(\lambda c) \tag{7}
\end{equation*}
$$

In an inhomogeneous medium this would be replaced by

$$
\begin{equation*}
\Delta \phi=\frac{8 \pi 10^{-6}}{\lambda c} \int_{\text {path }} \mathrm{vNdL} \tag{8}
\end{equation*}
$$

where v is the component of the velocity parallel to the ray path. An average value for vNL for a given atmosphere may be defined by equating (7) and (8).

To get an idea of the numbers involved, consider light at $\lambda=0.5 \mu$ and a medium having $n=1.3$ (e.g., water). Taking $v=10$ nvisc and $L=1 \mathrm{~m}$ in (6) yields: $\Delta \phi=0.58 \mathrm{rad}=33^{\circ}$. Such a value is easily measurable in an interference experiment by observing the shift of the fringe pattern relative to its position for $v=0$. In the casc of the atmosphere, let $10 \mathrm{~m} / \mathrm{sec} \cong 20 \mathrm{mplh}$ serve as a typical value for the wind velocity. The atmospheric refractivity is on the order of $\mathrm{N}=.300$ (e.p., see Bean and Dutton ${ }^{6}$). Consider a source in the IR band, with $\lambda=10 \mu$. In this region strong: stable CO_{2} lasers are available and a window exists for which the clear atmosphere is practically lossless. Setting the path length at $L=100 \mathrm{~km}$ yields in (7) the result $\Delta \phi=2.5 \mathrm{rad}=144^{\circ}$. This is an casily measurable phase. If we keep distances on a scale of $L=100 \mathrm{~km}$ and t:e wind velocity reciuces to about 2 mph , then we still have $\Delta p=14.4^{\circ}$ which is not difficult to measure. However.

If we now choose a source in the microwave rogion for example with $\lambda=10^{-2} \mathrm{~m}$ then $\Delta \phi$ will be smaller by a fector of 10^{3}. This would seem to completely rule out the use of microwaves for the terrestrial atmosphere. However, in planetary atmospheres one may encounter distances, velocities and refraction indices for which the use of microwaves may be of intereat.

SATELLITE CONFIGURATION

To illustrate that a measurement of wind velocity might be possible using the Fizeau effect, we will consider a hypothetical satellite configuration. In principle two rays are needed, one traveling through the atmosphere downwind, and the other traversing the atmosphere in the upwind direction. Fis. 2 shows a potentially suitable satellite configuration. In this example M is a master station on which the laser source is located and on which the processing of the returned signals takes place. The slave satellites S_{1} and S_{2} serve only to reflect the rays in the desired direction. The ray paths are marked $1,1^{\prime}, 1^{\prime \prime}$ and $2,2^{\prime}, 2^{\prime \prime}$ in an obvious way. Configurations are also possible in which the earth (e.g., the occan) is one of the reflectors. But the problem of maintaining beam coherence becomes critical for these configurations. Systems in which the master station or a reflector is located on the earth's surface, or on board an aircraft are also potentially feasible. The configuration illustrated in Fig. 2 will serve here to describe the principle.

Assume for the moment that all elements of Fig. 2 are at rest except for the atmosphere. Then the basic configaration consists of two laser beams which traverse the paths of equal length $1,1^{\prime}$. $1^{\prime \prime}$ and $2,2^{\prime}, 2^{\prime \prime}$ in opposite directions. In principle, this geometry is identical to the Fizau experiment. (Fig. 1) each beam will have experienced a phase shift which is due to two terms: the round trip distance and the contribution due to the motion of the medium. If the round trip distances are identical, then the only phase difference will be duc to the motion of the medtam. and since the beams traverse the moving medium in opposite directions with respect to the wind direction, the contributions to phase difference due to the Fizeau effect (8) will add. The net phase difference between the beams will then be given by (8) and can be measured by appropriately mixing the two beams at the master station. It is important to note that a knowledge of the total path length around the triangle is not necessary. Only the ray path through the medium and the valuc of N on it are needed. The necessary accuracy for these parameters is independent of wavekngth, i.e.. in
 throukh the atmosphere consider itselfective heiqht to be $h=5 \mathrm{~km}$ and let the radius of the carth
he $a=6360 \mathrm{~km}$. Then from Fig. $3 L=2 a \operatorname{tg} a$ and $\cos \alpha=a /(a+h)$. Substituting for h and a yields $L \cong 500 \mathrm{~km}$. Thus, if N and L are each knowis to within say 1%, e.g., 5 kin in a 500 km path and $\mathbf{3} \mathrm{N}$ units for $\mathrm{N}=\mathbf{3 0 0}$, then the error in computing the wind velocity will be on the order of 2%. Reasonable models for N and its gradient $\mathrm{dN} / \mathrm{dh}$ are available ${ }^{6}$, and satellite position. available to an accuracy of meters or better.

The preceding arguments apply only if all elements of the system ate at rest. If the satellites $\mathrm{M}, \mathrm{S}_{1}$ and S_{2} are allowed to move relative to each other and to the earth, as will be true in practice, then several important problems arise. First of all, changes will occur in the frequency of the laser pulses when they are reflected from the moving platforms S_{1} and S_{2}. It will be shown that there is a net Doppler frequency shift between beams which travel around the triangle $\left(M S_{1} S_{2}\right)$ in opposite directions. This net cffect gives rise to a nonvanishing phase difference between the two returning signals. It will be show n below how this effect can be taken into account and a meaningful measurement of the Fizeau phase change made. A second problem encountered when the system moves is that the path length need not be the same for beams which traverse the triangle in opposite direc-
 times for pulses leaving M smultancously. If the satellites are moving. this means they are encountered at different pesitions. This change in position introduces a net path kingth difference between the two beams. This is a real problem, because a path difference on the c ase of one wavelength wouk completely ohbterate the phase difference due to the Fiseau dfect However, it will be show in below that all motional effects can be properly taken into account in the computatem of the wind velocity. The fact that the laser beams become nonplanat along the path because of bean yread and that the satellites do not move on straight lines (due to what mot ken) will also be disaswed below

ANALYSIS OH SATELLITE MOTIONAL EFELCTS

Generally speaking, relative motion of the components of a system introduces frequent:direction and amplitude shifts, in addition to affecting the positions of the various parts of the sy:tem. These manifestations of motion can influence the phase of the returning rays. Consequentily a procedure must be devised for deriving the Fizeau phase change (8) in the presence of the spurious phase factors. In a proper relativistic treatment of electromagnetic plane waves in moving systems ${ }^{\varsigma}$ there appears an amritude effect of the first order in the velocity. This does not affect the phase and therefore, for purposes of this discussion, it can be neglected. Doppler shifts in wavelength and frequency are first order effects in v / c and since (7), (8) are already of the first order in v / c, these effects are of second order importance in the computation of the Fizeau effect. However, they have to be taken into account. For example, since we will be adding the returning waves in order to measure the Fizeau effect, any net frequency difference will cause the waves to beat in and out of phase, complicating the measurement of $\Delta \phi$. Consequently a carctul relativistic treatment of the Doppler frequency shifts will be presented below to properly assess these cflicts

Reiativistic Doppler effect: Let two inertial systems of reference nove at a relative velocity \mathbf{z}. The 'laboratory' system of reference $\underline{x}^{\prime}, t$ ' is now attached to satellite M. The 'comoving' system $\underset{\text { x. }}{ }$ tefers now to any other part of the configuration. Gravitational effects are neglected. For the special case where the origins ${\underset{\sim}{x}}^{\prime}=0, \underset{\sim}{x}=0$ coincide at $t=t^{\prime}=0$, special relativity prewribes the transformation ${ }^{7} 8$

$$
\begin{aligned}
& \underline{x}^{\prime}=\bar{U} \cdot(\underline{x}+\underline{v} t) \quad, \quad \underset{x}{x}=\bar{U} \cdot\left(\underline{x} \underline{v}^{\prime}\right) \quad .
\end{aligned}
$$

$$
\begin{align*}
& \gamma=\|\left(\text { wics }\left.^{2}\right|^{1 / 2}\right. \\
& \bar{U}=\tilde{i}+1, \quad 1 \hat{\hat{\imath}} \text {. } \tag{4}
\end{align*}
$$

where i is the demfactor dyadic and $\hat{\underline{E}}$ is a unit vector. In our case $\underset{\sim}{ }$ is the velocity of the
comoving system as observed from the laboratory. In the laboratory system an incident plane electromagnetic wave is given by:

$$
\begin{equation*}
E_{i} e^{i k_{j}^{\prime} \cdot \bar{x}^{\prime}-i \omega_{i^{\prime}}}, \tag{10}
\end{equation*}
$$

where $\underset{\sim}{{\underset{x}{x}}^{\prime}}={\underset{\sim}{x}}^{\prime}+{\underset{\sim}{a}}^{\prime}$, and $\underset{\sim}{a}$ is an arbittary constant. Thus in terms of ${\underset{\sim}{x}}^{\prime},(10)$ becomes

$$
\begin{equation*}
{\underset{\sim}{i}}^{\prime} e^{i \underline{k}_{i}^{\prime} \cdot{\underset{a}{a}}^{\prime}} e^{i k_{j}^{\prime} \cdot \ddot{z}^{\prime}-i \omega_{i}^{\prime} t^{\prime}}, \tag{11}
\end{equation*}
$$

and $\mathrm{e}^{\mathrm{i} \mathrm{k}_{\mathrm{i}}{ }^{\prime} \cdot \mathrm{a}^{\prime}}$ is a constant phase factor which must be carried along. In the comoving system we have a plane wave

$$
\begin{equation*}
{\underset{\sim}{\mathcal{N}}} e^{i \underline{k}_{i}^{\prime} \cdot \underline{a}^{\prime}} e^{i \underline{k}_{j} \cdot \underline{x}-i \omega_{i} t} \tag{12}
\end{equation*}
$$

where the electric field $\underset{\sim}{\mathrm{E}}$ is determined by the relativistic transformations for the fields. (This is not given here because only the phase is of importance. Details are to be found elsewhere ${ }^{5}$). According to the so called principle of the conservation of the phase, the exponents in (11).(12) must be equal. This prescribes

$$
\begin{array}{ll}
{\underset{\sim}{k}}^{\prime}=\tilde{U} \cdot\left(\underset{\sim}{k}+\omega \underset{\sim}{\underset{\sim}{v}} \mathrm{c}^{2}\right) & \underset{\sim}{k}=\tilde{\mathrm{U}} \cdot\left(\underset{\sim}{k^{\prime}} \cdots \omega^{\prime} \underset{\sim}{v} / \mathrm{c}^{2}\right) \\
\omega^{\prime}=\gamma(\omega+\underset{\sim}{v} \cdot \underset{\sim}{k}), & \omega=\gamma\left(\omega^{\prime}-\underset{\sim}{v} \cdot{\underset{\sim}{k}}^{\prime}\right) . \tag{1.3}
\end{array}
$$

We are interested in the effect produced when an incident wave is reflected (e.g., from a plane mirror) to a new direction. The reflector is moving according to

$$
\begin{equation*}
{\underset{\sim}{x}}^{\prime}=\underset{\sim}{v} \mathfrak{t}^{\prime} . \tag{14}
\end{equation*}
$$

and the local origin $\underset{\sim}{x}=\underset{\sim}{x}=0$ is chosen suth that it is on the plane mirror at $t^{\prime}=t=0$. The reflected wave is given by

$$
\begin{equation*}
{\underset{\sim}{u}}^{1} c^{i k^{\prime} \cdot a^{\prime}} a^{i k}= \tag{1.5}
\end{equation*}
$$

where on board the satellite the frequency is unchanged:

$$
\begin{equation*}
\omega_{0}=\omega_{i}, \tag{16}
\end{equation*}
$$

and ${\underset{\sim}{k}}_{0},{\underset{\mathcal{A}}{ }}$ are related by Snell's law; $\underset{\sim}{E}$ is determined hy the pertinent boundary conditions. Using the relativistic transformations once more, we obtain in the laboratory system of reference

$$
\begin{equation*}
{\underset{\sim}{E}}_{0}^{\prime} e^{i \underline{k}_{i}^{\prime} \cdot \mathbf{a}^{\prime}} e^{i \underline{k}_{0}^{\prime} \cdot \underline{x}^{\prime}-i \omega_{0}^{\prime} t^{\prime}} \tag{17}
\end{equation*}
$$

where from (13):

$$
\begin{equation*}
\frac{\omega_{0}^{\prime}}{\omega_{i}^{\prime}}=\frac{\left|{\underset{\sim}{k}}_{0}^{\prime}\right|}{\left|{\underset{\sim}{k}}_{i}\right|}=\frac{1+\underset{\sim}{v} \cdot{\underset{\sim}{\hat{k}}}_{0} / c}{1+\underset{\sim}{v} \cdot{\hat{\underset{\sim}{k}}}_{i} / c}=\frac{1-\underset{\sim}{v} \cdot \hat{k}_{i}^{\prime} / c}{1-\underset{\sim}{v} \cdot{\underset{\sim}{\hat{k}}}_{0}^{\prime} / c} . \tag{18}
\end{equation*}
$$

Finally, the wave is transformed back to the original system \bar{x} ' , yielding

$$
\begin{equation*}
\underset{\sim}{E_{0}^{\prime}} e^{i\left(\underset{i}{\left.k_{i}^{\prime}-{\underset{k}{0}}_{\prime}^{\prime}\right) \cdot}{\underset{a}{c}}^{\prime} e^{i{\underset{\sim}{k}}_{0}^{\prime} \cdot{\underset{\sim}{x}}^{\prime} \cdots i \omega_{0}^{\prime} t^{\prime}}\right.} \tag{19}
\end{equation*}
$$

Eq. (19) is the form taken by an arbitrary plane wave (10) after reflection from a plane surface moving at velocity $\underset{\sim}{\mathbf{v}}$.

We now make a few observations. Eq. (18) explains the fact that there is no Doppler frequency shift in the Fizeau experiment as presented in Fig. 1. All parts of this system are at rest, except the moving fluid. But in the fluid only forward type propagation takes place, i.e., $\hat{\mathbf{k}}_{0}^{\prime}=$ ${\underset{\sim}{k}}_{i}^{\prime}$. hence according to (18) $\omega_{o}^{\prime}=\omega_{i}^{\prime}$. Second, comparing (10) and (19) at $x^{\prime}=0, t^{\prime}=0$ we see that the exponential $e^{i\left(k_{i}^{\prime}-k_{o}^{\prime}\right) \cdot a^{\prime}}$ describes the round trip phase change due to the initial location and the motion of the reflector. Third, since ${\underset{\sim}{\mathbf{k}}}^{\prime}{ }^{\prime}$ is Doppler shifted with respect to $\underset{\sim}{\mathbf{k}_{i}}{ }^{\prime}$ this phase factor contains a first order velocity effect. In a velocity independent system, $\omega_{o}^{\prime}=\omega_{i}{ }^{\prime}$. hence the time factors in (10), (19) are equal and the phase difference between the two waves is a constant, independent of time. But when $\underset{\sim}{v} \neq 0$, then $\omega_{0}^{\prime} \neq \omega_{i}^{\prime}$ and the phase difference depends on time. This is so because the change of phase takes into account the motion of the reflector (14) and vanishes only at $t^{\prime}=0$ when the reflector is at ${\underset{\sim}{x}}^{\prime}=0$.

In the configuration being consideted here, we have waves travelling in both the up-and downwind directions around the triangle. Thus, one must consider the Doppler effect for waves
propagating in opposite directions, as depicted in Fis. 2. Assuming S_{1} to be in motion. the Doppler effect for rays $1,1^{\prime}$ is given by (18). For $2^{\prime}, 2^{\prime \prime}$ the same formula applies, but the directions and frequencies will be denoted by bars,

$$
\begin{equation*}
\overline{\bar{\omega}_{0}^{\prime}}=\frac{1+\underline{y} \cdot \hat{\hat{k}}_{0} / c}{1+\underline{\omega_{i}^{\prime}} \cdot \hat{\underline{k}}_{i} / c} \tag{20}
\end{equation*}
$$

Now align the rays such that in the comoving system they are oppositely directed

$$
\begin{equation*}
\hat{\underline{k}}_{0}=\hat{\underline{k}}_{i} \cdot \hat{\underline{k}}_{0}=\hat{k}_{i} . \tag{21}
\end{equation*}
$$

Note that due to the relativistic formulas for the aherration phemomenon (13), there will be some difference in directions, cither in the laboratory or in the comoving system of reference. The present choice simplifies the discussion. Using

$$
\begin{equation*}
\omega_{i}^{\prime}=\omega_{i}^{\prime} \tag{2n}
\end{equation*}
$$

and substituting (18), (20), 121), we ohtain

$$
\begin{equation*}
\frac{\omega_{0}^{\prime}}{\omega_{0}^{\prime}}=\frac{1\left(\underline{\hat{k}_{i} / \omega}\right)^{2}}{1\left(\underline{v_{0}} \hat{k}_{0}\right)^{2}} \tag{2.3}
\end{equation*}
$$

Thus, in this case, the reflected tays $1^{\prime \prime}$ and 2^{\prime}. ligs. 2, 3. do not have the sume frequency, the diference being of the order(vio ${ }^{2} \cdot \omega_{1}^{\prime}$. This is to say that reflection from a moveme merror is monreciprocal, in the sense that a net frequency difference occurs when the rokes of medent and

 order eftect will appear in (23). This can happen as a result of heam spread and orhital motion. derinsed hidon

Iflects due to orbital moten and heam spead: For a fimite eeflector the above resulis may he

geometrical effects are present, which must be adequately taken into account. As the reflector moves, it intercepts different parts of the incident beam. Also the outgoing beam is laterally displaced as depicted in Fig. 4. However, as long as the reflector and the receiver are well within the beams, the above plane wave formulas are applicable. Pulses emitted simultaneously from M (in opposite directions around the triangle) will reach S_{2} about 0.01 sec apart because of the different paths traversed. During this time the reflector S_{1}. say, moves a distance of the order of 100 m . This distance is small compared to the expected beam cross sections and therefore the plane wave formulas can be used, provided the directions of the rays are properiy taken into consideration.

Due to the orbital motion of the satellites, the velocity does not remain constant, and the kinematic effects might affect the results of the measurement. For a satellite moving at a height of say 1000 km the absolute value of the velocity remains practically constant during a period on the order of a second. However, the direction of the velocity is changed on the order of $10^{-3} \mathrm{rad} / \mathrm{sec}$. This will affect the Doppler shift (18) and constitutes a perturbation which must be taken into account in the signal processing (discussed in the next section).

The analysis of the Doppler effect given above is based on the assumption of plane wavefronts. Due to the spreading of laser beams, wavefronts become curved. In Fig. 5 it is assumed for sake of an illustration, that the wavefronts are spherical, having point a as the center of curvature. Fictitious rays and the fictitious extension of the reflector are shown in dashed lines. The moving reflector first engages rays 1 . 1'. later it intercepts 2 , reflecting it as 2^{\prime}. By inspection of the fictitious rays 1,1 " and 2, $2^{\prime \prime}$ it becomes clear that the only effect on our analysis is again a change of direction. this time for the unit vectors $\underset{\sim}{\hat{k}}$ in (18). This effect is of the same magnitude as the above orbital motion effect.

Effect of relative motion on measurements: In gencral both satellite and atmosphere (wind) are in motion relative to an observer on the carth. Thus the questen of what velocity will register in our measurements is of mportance. To be specific, we first consider the Fizeau experiment of Fig. 1 , assuming $\mathrm{y}=0$. The phase accumulated by the rays depends on the electrical length (i.e.. the
equivalent free space length) of each path. The phase difference provides the zero reference for our experiment. Now let us set the upper vessel (Fig. 1) in motion, at a relative motion $\boldsymbol{v}_{\mathrm{R}}$ with respect to the laboratory. Because of the ensuing Doppler effect, the excitation frequency tor the upper vessel is now different. This is tanta nount to saying that the electrical length is modified. This will shift the zero reference, but will not otherwise affect the results of the Fizeau experiment. This is due to the fact that the Fizeau effect is already of first order in v / c, hence changes of frequency due to motional effects are negligible in (7), (8). A detailed .'iscussion, pertinent to the configuration of Fig. 2 is given in the next section. An investipation of relative motion in the Fizeau effect has been conducted by Zeeman (e.g., see Jones ${ }^{4}$ for reference to original papers. see also Zernike ${ }^{9}$).

SIGNAL PROCESSING

In order to extract the phase change due to the motion of the atmosphere, it will be necessary to compare the phase of the two laser beams which have propagated around the path (Fig. 2) in opposite directions. First, consider the case where the atmosphere is absent. To further simplify the analysis, it is temporarily assumed that orbital motion and beam spread effects are absent. These restrictions will be waived later on. To begin, consider the phase accumulated by a plane wave transmitted from the master station, M, and travelling around the path in the direction M, S_{1}, S_{2}, M. (From now on primes will be suppressed since only observations in the laboratory frame will be considered.) Assume that the wave transmitted from M is:

$$
\begin{equation*}
{\underset{\sim}{M 1}} e^{i\left(\underline{k}_{M 1} \cdot{\underset{\sim}{M}}-\omega t\right)}, \tag{24}
\end{equation*}
$$

where ${\underset{\sim}{k}}_{\mathbf{M} 1}$ is directed from the local origin ${\underset{\sim}{M}}^{\mathbf{x}}=0$ to the local origin ${\underset{\sim}{x}}_{1}=0$ of S_{1}. Consequently the phase factor $e^{i \underset{\sim}{\boldsymbol{k}} \mathrm{MI}^{\cdot} \cdot \mathbf{a}_{\mathrm{MI}}}$ is introduced in translating the wave to the local origin of S_{1}. Although the choice of $\underset{\sim}{x}=0$ is arbitrary, if we choose it on the actual reflector at $t=0$ (and not
 wave reflected from S_{1} is therefore given by

$$
\begin{equation*}
{\underset{\sim}{12}} e^{i k_{M 1}{ }_{m 1}} e^{i k_{12} \cdot{\underset{\sim}{1}}-i \omega_{12} t}, \tag{25}
\end{equation*}
$$

where ${\underset{\sim}{12}}$ is directed towards the local origin ${\underset{\sim}{x}}_{2}=0$ of S_{2}. The wave arriving at S_{2} will have the additional phase factor $e^{i k_{12}{ }^{2} 12}$, where a_{12} is the distance from ${\underset{\sim}{x}}_{1}=0$ to ${\underset{\sim}{x}}_{2}=0$. Thus, the wave reflected by S_{2} in the direction of M is given by

$$
\begin{equation*}
{\underset{\sim}{2 M}} e^{i\left(k_{M 1} a_{M 1}+k_{12} a_{12}\right)} \cdot e^{i k_{2 M} \cdot \underline{x}_{2}-i \omega_{2 M} t} \tag{26}
\end{equation*}
$$

where ${\underset{2}{2}}^{M}$ is directed towards the local origin of M. Hence at M we receive at ${\underset{X}{M}}^{M}=0$ a sighal

$$
\begin{equation*}
{\underset{\sim}{M}}_{(a)}^{e^{i\left[k_{M 1} a_{M 1}+k_{12} a_{12}+k_{2 M} a_{2 M}-\omega_{2 M} l\right]} \equiv{\underset{\sim}{M}}_{(a)}^{\left(i \psi_{a}\right.} ., ~ . ~ . ~} \tag{27}
\end{equation*}
$$

where $E_{M}^{(n)}$ is its amplitude. Similarly, for the round trip $2,2^{\prime}, 2^{\prime \prime \prime}$ we start with a wave emitted by M,

$$
\begin{equation*}
\underline{E}_{M 2} e^{i k_{M 2} \cdot x_{M}-i \omega t} \tag{28}
\end{equation*}
$$

where by now the notation is obvious. The weve reflected by S_{2} towards S_{1} will be

$$
\begin{equation*}
E_{21} e^{i k_{M 2} a_{M 2}} e^{i k_{21} \cdot x_{2}-i \omega_{21} t} \tag{29}
\end{equation*}
$$

There u iil be a similar reflection produced by S_{1}, and so finally the wave arriving at ${\underset{\sim}{M}}^{M}=0$ is

$$
\begin{equation*}
{\underset{M}{M}}_{(b)} e^{i\left[k_{M 2} a_{M 2}+k_{21} a_{21}+k_{1 M} a_{1 M}-\omega_{1 M} t\right]} \equiv{\underset{M}{M}}_{(b)} e^{i \psi_{b}} \tag{30}
\end{equation*}
$$

which will be compared to (27) in order to extract the phase difference due to the Fizeau effect. Notice that $\mathrm{k}_{\mathrm{ij}} \neq \mathrm{k}_{\mathrm{ji}}$ (e.g., $\mathrm{k}_{\mathrm{Ml}} \neq \mathrm{k}_{1 \mathrm{M}}$), since the Doppler frequency shifts are different in each case. Also note that the amplitudes ${\underset{M}{M}}_{(a)}$ and ${\underset{\sim}{M}}_{(b)}^{(b)}$ are unimportant for our problem and so no explicit expressions are included for them. Any boundary condition at the retlectors S_{1} and S_{2} would be identical for the two oppositely traveling waves and is already absorbed into the amplitudes ${\underset{\sim}{M}}_{(\mathrm{a})}$ and ${\underset{\sim}{M}}_{(\mathrm{b})}$.

In view of (18) all $k_{i \mathrm{j}}$ and ω_{ij} in (27), (30) are proportional to the source frequency ω. Hence $\psi_{\mathrm{a}},(27)$ and $\psi_{\mathrm{b}} .(30)$ can be recast in the form

$$
\begin{align*}
& \psi_{\mathrm{a}}=\omega(\alpha+\beta t) \\
& \psi_{\mathrm{b}}=\omega(\hat{\alpha}+\hat{\beta} t) . \tag{31}
\end{align*}
$$

Now suppose that the two heams a and h are coherently detected and the phase diflerence $د \dot{\psi}$ $\psi_{a} \quad \psi_{b}$ measured, yiolding:

$$
\Delta \dot{\psi}=\omega\left(\begin{array}{ll}
\alpha & \hat{\alpha} \tag{32}
\end{array}\right)+\binom{\beta}{\beta} t
$$

Takime $\lambda=10 \mu$, and $v_{s}=10 \mathrm{~km} / x^{2}$ for the satellites. to be representative values. according to (23) us find the difference frequency $\omega_{1 M}-\omega_{2 M}=\omega(\beta \quad \hat{\beta})$ to be on the order of $\omega\left(v_{s} c\right)^{2} \cong$ 100 kll , Nixt we consider the values of $\omega(\alpha \hat{\alpha})$, ($\mathbf{3}$). For an observer on the ground we have.
to the first order in the velocity (Fig. 2):

$$
\begin{aligned}
& k_{M 1}=k\left(1+{\underset{\sim}{M}} \cdot{\underset{\sim}{k}}_{M 1} / c\right)=k\left(1+\sigma_{M 1}\right), \\
& k_{M 2}=k\left(1+{\underset{\sim}{M}}^{v_{M}} \cdot \hat{k}_{M 2} / c\right)=k\left(1+\sigma_{M 2}\right) \text {, }
\end{aligned}
$$

$$
\begin{align*}
& k_{2 M}=k_{12}\left(1-{\underset{\sim}{v}}_{2} \cdot \hat{k}_{12} / c+{\underset{\sim}{v}}_{2} \cdot \hat{\underline{k}}_{2 M} / c\right)=k_{12}\left(1+\sigma_{2}\right) \text {, } \\
& k_{21}=k_{M 2}\left(1-{\underset{\sim}{v}}_{2} \cdot{\underset{\underline{k}}{M 2}} / c+{\underset{\sim}{v}}_{2} \cdot{\underset{\sim}{\hat{k}}}_{21} / c\right)=k_{M 2}\left(1+o_{2}\right), \\
& k_{1 M}=k_{21}\left(1-\underset{\sim}{v} \cdot{\underset{\sim}{\hat{k}}}_{21} / c+{\underset{\sim}{v}}_{1} \cdot{\underset{\sim}{k}}_{1 M} / c\right)=k_{21}\left(1+\sigma_{1}\right) \text {, } \tag{33}
\end{align*}
$$

and for $a_{i j}=a_{j i}\left(e . g ., a_{M 1}=a_{1 m}\right)$ this yields

$$
\begin{align*}
\omega(\alpha-\hat{\alpha})= & k\left[a_{M 1}\left(\sigma_{M 1}-\sigma_{M 2}-\sigma_{2}-\sigma_{1}\right)+a_{M 2}\left(\sigma_{M 1}+\sigma_{1}+\sigma_{2}-\sigma_{M 2}\right)\right. \\
& \left.+a_{12}\left(\sigma_{M 1}+\sigma_{1} \cdot o_{M 2} \quad \sigma_{2}\right)\right], k=\omega / c \tag{.34}
\end{align*}
$$

Taking a_{ij} on the order of $10^{4} \mathrm{~km}$, it turns out that $\omega(\alpha-\hat{\alpha})$ is on the order of $2 \pi \cdot 10^{7} \mathrm{rad}$. Since $\omega(\boldsymbol{\alpha}-\hat{\alpha})$ is much larger than $\Delta \phi$ which we are trying to measure, a method must be found to calibrate the system for $\omega(\boldsymbol{\alpha}-\hat{\alpha})$ prior to measurement, and to account for its variation during the measurement. This will be discussed subsequently.

There exist a variety of effects changing $\omega(\alpha-\hat{\alpha})$ and $\omega(\beta-\hat{\beta})$ from the values obtained above. Note that signals simultaneously emanating from M do not reach \mathbf{S}_{1} (or S_{2}) at the same time since the paths that they follow are of different length (e.g., $\mathrm{MS}_{1} \mathrm{~S}_{2}$ compared to $\mathrm{M} \mathrm{S}_{2}$). The time difference is on the order of 10^{-3} to 10^{-2} seconds. As a result the σ_{1} in (33) associated with k_{12} and $k_{1 M}$ are net the same, nor are the σ_{2} associated with k_{21} and $k_{2 M}$ identical. Taking this effect into account only slightly changes the magnitude of $\omega(\boldsymbol{\alpha}--\hat{\alpha})$ in (34). The most important effects are the changes that occur in satellite velocity with time as the satellites move in their orbits around the earth (orbital motion), and the fact that the laser teams are not truly plane waves (beam spread).

These two effects can introduce a time dependence in $\sigma_{1 M}, \sigma_{2 M}, \sigma_{1}, \sigma_{2}$. To study the effect of orbital motion, let us represent (34) by $2 \pi \cdot 10^{7} \cos \theta$, where θ is the angle understood in the scalar products in (33). Due to orbital motion θ is time dependent and therefore a representative for (34) can be written in the form

$$
\begin{equation*}
2 \pi \cdot 10^{7} \cos \left(\theta_{0}+\frac{v_{8}}{r} r\right), \tag{35}
\end{equation*}
$$

where r is the distance of the satellite from the earth's center and v_{8} is its velocity, and θ_{0} refers to the time $\boldsymbol{r}=0$ which is arbitrarily chosen. Thus during one econd ${\underset{\sim}{s}}$ changes by an angle on the order of $v_{s} / r \approx 10^{-3} \mathrm{rad}$. For worst case analysis take $\left|\theta_{0}\right|=\pi / 2$, hence near $\tau=0(35)$ behaves as $2 \pi \cdot 10^{4} \tau$. corresponding to a frequency on the order of 10 kH .. The time dependence introduced by beam spread is of the same nature and magnitude, with $r=10^{4} \mathrm{~km}$ in (35) standing for a typical distance between satellites. The effect on $\omega(\beta-\hat{\beta})$ is even larger. since $\beta \quad \hat{\beta}$ corresponds to a small difference between large numbers. Here the time delay for simultaneously emitted siznals arriving at a reflector introduces a change of direction which perturbs (21). Hence (23) contains first order effects which must be carefully evaluated. For $v_{s} \geq 10 \mathrm{~km} / \mathrm{wcc}$, a distance $10^{4} \mathrm{hmibr}$ tween satellites and delay time on the order of 10^{-2} seconds. the angle subtended hy the opposilely propagating beams is on the order of 10^{-5} rad. This number is on the order of v/e hence the frequency difference is on the order of $(v / c)^{2}$ as in (23); i.e., $\omega(\beta-\hat{\beta})$ is still considered to be in the 100 kHz band. Depending on the parameters chosen in Fig. $2, \omega(\beta \quad \hat{\beta})$ on the order of 1 MHz can also be considered realistic. In any case, for a short period of observation. on the order of $1 \quad 10$ seconds, it can be assumed that the time dependent effects combine to yied in (.32) a fixed value $\omega(\alpha \quad \hat{\alpha})_{\tau=0}$ and a slightly modified frequency $\omega(\beta \quad \hat{\beta})$. Of course, we cannot hope to compute these values from the formulas given above with sufficient accuracy allowing for measurement of

 2n) Commercally available counters are capable of tome measurement with an crrer on the order
of 10^{-10}, which will also be the error in frequency for a one second measarement (atomic clocks are several orders of magnitude more accurate). This suggests a method for calibrating the system. Thus if we measure the frequency $\omega(\beta-\hat{\beta})$ and make a phase measurement at some time $\tau=0$ (prior to the time when the line of sight penetrates the atmosphere), then we can safely assume that $\omega(\alpha-\hat{\alpha})_{r=0}+\omega(\beta-\hat{\beta}) \tau$ is known for a period on the order of $1-10$ seconds.

This brings us to the point where we wish to consider the effects of the atmosphere on our system. There are three effects taking place simultaneously, and since the Fizeau phase (7), (8) is the one we want to measure, the other two must be computed, using independent data. The first of these two effects is the relative motion in the system, which produces different excitation frequencies for the oppositely moving rays. $\operatorname{In} \psi_{a}(27)$ we have to subtract the free space phase $k_{M 1} L$ and add the effect of the refractive medium as $k_{M 1} L n$. Similarly $k_{1 M}(n-1) L$ is added to $\psi_{b}(30)$. The difference is given by

$$
\begin{equation*}
\Delta \psi_{R}=k\left(\sigma_{M 1}-\sigma_{1 M}\right) \mathrm{LN} \cdot 10^{-6} . \tag{36}
\end{equation*}
$$

which takes into account the relative velocities, as explained in the previous section. In (36) the same effective value LN is assumed for the two oppositely going waves. Comparing (36) and (7) it is seen that the Fizeat: phase is three or four orders of magnitude smaller, because of the ratio of the wind velocity to satellite velocity. However, satellite velocity can be accurately measured by monitoring the motion. It can also be inferred from the satellite's height, assuming a circular orbit. For example, if the positioning error is 10 m , we use $v_{s}{ }^{2}=\mathrm{rg}$, where $\mathrm{g} \approx 10 \mathrm{~m} / \mathrm{sec}^{2}$ is the gravitational constant relevant to the distance r from the carth's center, obtaining $\Delta \mathrm{v}_{\mathbf{s}} / \mathrm{v}_{\mathbf{s}} \approx 10^{-6}$. To compute (36) we need the directions ${\underset{\sim}{k}}_{\mathrm{k} 1} \cdot{\underset{\sim}{\hat{k}}}_{1 M}$. With a positioning error 10 m and distance between satellites on the order of $10,000 \mathrm{~km}$. the error is on the order of 10^{-6}. Satellite positioning is continuously improved, and with the advent of the Global Positioning Svstem project one or two orders of magnitude improvement can be expected. Hence in computing (36) we still have enough precision left for determining the Fizeau phase (7). (8). The second effect which must be computed independently is the change in path length and direction of propagation of the line of sight sue to
ray bending in the atmosphere. In order to ascess :his effect we assume that on a path length of 100 km in the lower atmosphere the ray bending will be significant. Using the (4/3)a effective carth radius model ${ }^{6}$. this means that the radius of curvature of the ray will be 4a. This will bend the ray through an angle on the order of 10^{-3} rad at the extreme level of penetration into the atmosphere, when the line of sight is close to occultation. The effect on the path length is on the order of $1 \cos 10^{-3} \geq 10^{-S}$ hence with $\omega(\alpha-\hat{\alpha}) \geq 2 \pi \cdot 10^{7}$ we have to compute a phase on the order of 20π which is much smaller compared to $\Delta \psi_{R}$. On the other hand, the change of direction on the order of 10^{-3} rad implies a change in the Doppler effect factors $\hat{\underset{k}{x}} \underset{\sim}{v} / \mathrm{c}$. The effect on $\omega(\beta \quad \hat{\beta})$ is negligible, because β. $\hat{\beta}$ are affected in the same way. keaving the difference $\beta \quad \hat{\beta}$ practically unaltered. However, the factors σ in (33) are changed, implying a phase on the order $\Delta \psi_{B}=$ $2 \pi \cdot 10^{4}$ which is larger than $\Delta \psi_{R}$. It is therefore expected that the minimum altitude for measurement of wind speed will be limited by the accuracy with which $\Delta \psi_{B}$ can be determined.

Prior to the line of sight penetrating the atmosphere $\Delta \psi$ is measured and its value during the measurement can be projected by knowing the frequency, as explained above. While the remote wnsing measurement of the wind velocity is taking place, a different phase Δ_{A} is recorded. The diflerence, including the correction factors $\Delta \psi_{R} . \Delta \psi_{B}$ discussed above finally yields the Fizeau phase $\Delta \phi$ according to

$$
\begin{equation*}
\Delta \phi=\Delta \psi_{A}\left(\Delta \psi+\Delta \psi_{R}+\Delta \psi_{B}\right) . \tag{37}
\end{equation*}
$$

From this the wind velocity is ohtained as an average value over the path. for various altitudes.
We have consedered the various effects separately: the combined error in measuring the wind Felocity is expected to be larger. On the other hand, worst case parameters have been chosen most of the time and some effects will tend to mutually cancel A befter understanding of the meteractom of the varous effects calls for a computer modelling of the entire problem.

COHERENCE CONSIDERATIONS

3ince the proposed procedure for measuring wind velocity depends on making phase measurements, the coherence of the laser beams as they traverse the system must be examined. The problem will be discussed below in a preliminary way. Clearly, better understanding of this aspect of the problem is needed.

First, the coherence time of the source must be examined. In the configuration of Fig. 2 ray 1 reaches S_{1} before 2^{\prime}. A ssuming the distance difference to be 3000 km , this amounts to a delay time of 0.01 sec . During this time S_{1} was moving at a velocity of $10 \mathrm{~km} / \mathrm{sec}$, say, covering a distance of 100 m . It follows that the time diff rence between rays $1^{\prime \prime}, 2^{\prime \prime}$ returning to M, Fig. 2, is of the order of $1 \mu \mathrm{sec}$. Such a coherence : :me is of course amply supplied by a laser.

Next, the randomness of the ω. mosphere must be taken into account. Over the long paths planned here, it is expected that atmospheric turbulence and irregularities will degrade the phase information. What we shall argue here is, that this does not invalidate the fundamental ideas given above, and that there are ways of controlling the amount of incoherence encountered at the de:cotor.

In order to understand the physics of the problem, consider a point source in a random medium like the atmosphere. Due to the random irregularities in the atmosphere, the wave willdevelop phase fluctuations, i.e., the wavefront away from the point source will not be spherical any more. The presence of a distorted wavefront also means that rays, perpendicular to wavefronts, will now travel in directions which are not strictly radial. At larger diftances these rays will interfere, giving rise to the scintillation phenomenon. This problem has been studied extensively, both theorctically and experimentally. See Ishimaru ${ }^{3}$, and Tatarski ${ }^{10}$, who also cite many earlier references. Since the present problem is closely related to scintillation from point sources, ideas relevant to this subject will be used.

A discussion well suited for our problem is given by Lawrence ${ }^{11}$. He argues that the irregularities mest effertive in producing scintillation are of dimension of the first Fresnel zone. Hence. in
order to use point source theory, at least the fira Freanel zone for $\lambda=10 \mu$ must be illuminuted. For the present parameters where satellites are about 1000 km high above the ground and about 7500 km apart, the Fresnel zone is of the order of 4 m . midway between the satellites. Typical laser beam spread angles are of the order of $\lambda / D . D$ being the aperture diameter of the transmitter. Taking D to be 0.1 m , we obtain an angle of 10^{-4} rad. This means that the radius of the beam's cross :- -tion will be hundreds of meters, containing many Fresnel zones. We are therefore justified in treating the radiation as originating from a point source. The diameter of the most effective irreqularity. which is also the radius of the first Fresnel zone. is given by

$$
\begin{equation*}
d=\sqrt{\lambda_{g}} \cdot s=z_{1} z_{2} /\left(z_{1}+z_{2}\right) \tag{38}
\end{equation*}
$$

where 2, 7_{2} are the distance to the source, the distance to the receiver. respectively. As a first approximation for our case, the atmosphere an be thought of as being lumped midway between the satellites, so that $I_{1}=12$ and as mentioned above. $d \in 4 \mathrm{~m}$. It is argued that in the presence of laryer irregularities. the smaller ones predominate, much like the case of a ground glass plate put in front of a lens. On the other hand, the spectrum of atmospheric turbulence increases with irrepularity size. It is therefore assumed that irregularities whose size is given by (38) are most effective. If is also known that the whdity of the present model is limited! Corresponding to the irrenularties a random pattern of intensity thetuations will be measured in the womity of the recemer. Fine pattern radius corresponding to (38) is given by ${ }^{11}$

$$
\begin{equation*}
\rho=(1+112) d 2 \tag{.39}
\end{equation*}
$$

If we take $7_{1}=12$ 3gam. (39) yields

$$
\begin{equation*}
\rho=d=4 m \tag{1+11}
\end{equation*}
$$

The pattern radius is choxly related io the distance between untorrelated part, in the fied measured near the fecever. This concept is important for our discossom of apereme averapme.

$$
\begin{equation*}
\zeta=(\delta / d) \pi^{-1 / 2} \approx \delta /(2 d) \tag{4!}
\end{equation*}
$$

It is realized that the theory corresponding to Fig. 25.6^{11} is more intricate, however, we use the results here to get a rough idea of the parameters involved. Thus by inspection (Fig. 25.6 ${ }^{11}$), it is found that $\zeta=1$ roughly corresponds to zero correlation, i.e., $\eta=0$, and

$$
\begin{equation*}
\delta=2 d \geqslant 8 m \tag{42}
\end{equation*}
$$

between detectors will ensure uncorrelated statistical measurements
The problem of decreasing scintillation is very similar to overcoming fading in radio wave propagation, and one obvious method is spatial diversion reception. The analog for the present problem is the increasing of the receiver's aperture. Loosely speaking, if the aperture collects more rays, at different phases, the random phase factors will be eliminated, and the coherent component of the radiation will be enhanced. This is usually referred to as aperture averaging and is discussed by Ishimaru ${ }^{3}$ and Tatarski ${ }^{10}$. for example. For the aperture averaging to be effective, encugh uncorrelated "portions" of radiation must be added through the aperture. In systems where good imaging quality is also required, this implies large aperture, costly and heavy telescopes. The imaning problem does not enter into our considerations, therefore for the present system a large array at small aperture receivers will suffice. This poses the unrealistic requirement of having an aperture many times larger than $\delta=8 \mathrm{~m}$. Fortunately, the present configuration corresponds to a detector moving at about $10 \mathrm{~km} / \mathrm{sec}$. This means that during one second as many as 1250 uncorrelated samples can be gathered. Of course, we are limited by the fact that the satellites change position cuntinuously, sweeping through different parts of the atmosphere. However, during the time of tice order of one second, the distance traversed is of the order of a few kilometers. This still allows for good resolution of the order of 10 km . The error in phase due to scintillation may be considered as noise present in the process of measuring $\Delta \phi$. The present method of "synthetic" aperture aver-
 be enhanced and the noise diminished.

The abovs is a somewhat pessimistic evaluation of the system, since there are additional factors working in our favour. For example, we have to take into account the fact that the transmitter is moving too, continuously changing the line of sight, at different positions and angles. This should have an effect at least as significant as the moving receiver. Consequently $\delta=4 \mathrm{~m}$ and twice as much independent data can be accumulated in a given time period. It is well known that scintillation is rapidly reaching saturation, and does not grow with the length of the line of sight path ${ }^{3,10,11,12}$. Lawrence ${ }^{11}$ puts the saturation distance for visible light at a path near the ground in the vicinity of one kilometer. This phenomenon, combined with the low scattering in the atmosphere in the 10μ IR band might result in very low noise levels. The subject will have to be discussed in more detail.

A method has been proposed for measuring atmospheric wind velocity from space platforms. The present method is based on the Fizeau effect, and consists of transmitting two laser beams through the atmosphere, one upwind and the other downwind, and measuring the phase difference.

Typical numbers for the atmosphere indicate that the eifect should be measurable. The question of carrying out the measurement in the presence of Doppler effects has been considered in detail, and it has been shown that although these effects make the measurement more difficult, the wind velocity can be measured, in spite of the fact that it is several orders of magnitude lower than the satellite velocity.

Inasmuch as a coherent measurement is proposed, the mechanisms introducing incoherence have been discussed. The main effect is expected from scintillation, which can be decreased by averaging the measurement over a short time period.

The present study is only preliminary, and many questions must still be answered to determine the practicality of this method for measuring wind velocity.

REFERENCES

1. C. G. Little, "Status of remote sensing of the atmosphere", paper \#30 in Remote Sensing of the Troposphere, V. F. Derr, ed., published by USGPO, 1972.
2. Special Issue on Radio Oceanography, C. T. Swift, ed., IEEE Trans. on Antenisas and Propagation, AP-25, Jan. 1977.
3. A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, 1978.
4. D. S. Jones, The Theory of Electromagnetism. Pergamon Press. 1964.
5. D. Censor. "Scattering of a plane wave at a plane interface separating two moving media". Radio Science, 4. 1079-1088, 1969.
6. B. R. Bean and E. J. Dutton, Radio Meteorology, NBS Monograph \#92, Govt. Print. Off., Washington DC. 1960.
7. A. Binstein. "Zur tlektrodynamik bewegter Körper", Ann. Phys., 17, 891-921, 1905.
8. W. Pauli, Theory of Relativity. Pergamon Press, 1958.
9. F. Zernike. "The convection of light under various circumstances with special reference to Zecman's experiments". Physica. 13. 279-288, 1947.
10. V.I Tatarski, Wave Propagation in a Turbulent Medium. Mchraw-Hill, 1901.
11. K. S. Lawrence, "Remote sensmg by line of sight propagation." paper \#25. Remote Sensing ol The Atmosphere. V. I Dem. d. USCitO. 1972.
12. S. F Chford. "Propogaton and sattering in random media", paper $\neq 11$. Remote Schamg of The Atmosphere, V. Derr. ad. US(iPO. 1972.

Hgure 2. Satellite configuration for wind velocity measurement. Source and signal processing equipment are carried by M,
reflectors are provided on board S_{1} and S_{2}.

Figure 3. Estimation of atmospheric path length.

Figure 4. Effect of reflector motion on lateral displacement of beams.

APPENDIX A: A LIST OF OPEN PROBLEMS

1. Detectability of Signals: Existing and projected instrumentation must be examined for implementation of the present method. This applies especially to lasers and detectors.
2. Atmospheric Attenuation: Based on available data for standard atmospheres and special deviating cases, estimate the bounds on the applicability of the present method.
3. Cloud Cover: Using climatological data, estimate the fraction of time for which the method is operable. Compare to limitations on other methods.
4. Ocean Reflection Configuration: This configuration has been abandoned in the present study. becaluse it was felt it might be too noisy. The method is attractive because it requires two sitellites only. Check if aperture averaging technique, as described above. facilitates the use of this configuration.
5. Coherence Problems: Provide a quantitative analysis of the incoherence introduced by the atmosphere and the reduction of scintillation by synthetic aperture averaging.
6. Resolution: Consider inversion techniques relevant to the present system for improving resolution.
7. Comrute- Model: The combined effect of many factors described above is too complicated to be investigated analytically. A computer model should be constructed in order to test various ideas given above.
8. An Acoustical Analog for Doppler Effects: The design of a laboratory or ground based experiment which car: simulate the high velocities of the satellites is probably as complicated as using the system itself. In acoustics it is relatively casy to achieve strong Doppler effectsfathough we cammot smmate the second order relativistic effects discussed abowe). Destgn an appopriate experiment. It air or water, that will test the feasibility of coherent measurements in the presence of strong Dopphereffects.

[^0]: *On leave of absence from the Dept. of EE, Ben Gurion University of the Negev, Beer Sheva, Israel. Presently a National Academy of Siences NRC Research Associate at NASA GSFC.
 **NASA Gioddard Space Flight Center, Code 946, Greenbelt, MD 20771.

